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ABSTRACT 

Frequency hopped signals are widely used in various communication applica- 

tions for their inherent security features. The demand, by civilian and governmental 

agencies, to intercept communication signals is increasing. The interception task can 

be summarized by detecting the signal's presence in additive noise, classifying the 

modulation type, estimating the control parameters, decoding the data, and decrypt- 

ing the information content. This work addresses the merging of wavelet and corre- 

lation concepts to detect, classify and estimate the parameters of frequency hopped 

signals. 

We address the interception problem in two ways. The first approach is based 

on a visual inspection of the wavelet surfaces generated from the instantaneous cor- 

relation function of the communication signal and leads to hop start/stop times es- 

timates. In the second approach, we apply an energy-based processing scheme to 

estimate the hop start and stop times, the hop-scale pattern, and the hop frequency. 

Results show that frequency hopped signals can be identified at an SNR of 3 

dB or 6 dB using visual inspection or an automated scheme, respectively. 
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I.       INTRODUCTION 

A.     PROBLEM STATEMENT AND OVERVIEW 

The demand to be able to intercept communication signals is increasing, as 

interception is a basic investigation tool for civilian, intelligence and military author- 

ities. The task of intercepting a communication signal can be summarized by detect- 

ing the signal's presence in additive noise, classifying the modulation type, estimating 

the control parameters required for reception, decoding the data, and decrypting the 

information content. Sometimes, the procedure is stopped at the detection (identifi- 

cation) step such as in geo-location or spectrum monitoring. Intelligence applications 

aim at the final step which is to extract the information content. 

Communication signals can utilize a great diversity of digital modulation tech- 

niques. Among the digital techniques, the spread spectrum signal (SS) is widely used. 

Frequency hopping signals (FH) are a subset of SS, and are used primarily in this 

dissertation. In the open literature, many signal processing tools are available for the 

interception task, and among those are the correlation analysis and wavelet analysis. 

Each of these tools has been used independently in the signal processing and commu- 

nication area. In this work we will address the merging of the wavelet and correlation 

concept to detect, classify and estimate signal parameters. 

The FH signal is a non-stationary process. Hence a specific type of two- 

dimensional correlation function, called the instantaneous correlation function, is se- 

lected, as it accommodates the time-varying nature of the signal of interest. Ap- 

plication of wavelet analysis to correlation functions is a new area and is still in 

the exploratory stage. The automation of the interception and exploitation of dig- 

ital communication signals is the final goal. This work addresses the interception, 

identification, classification, and parameter extraction of FH signals. 

We start by investigating the wavelet transform of different types of the cor- 

relation functions. Then, we select the instantaneous correlation function (ICF) as 



the candidate correlation representation. We derive the instantaneous correlation 

function of the FH signal and analyze its wavelet transform obtained by using the 

Morlet wavelet. The wavelet transform of the instantaneous correlation function is 

a 3-dimensional (3-D) surface. We partition the 3-D surface into a number of 2-D 

surfaces, where each corresponds to one wavelet scale (called the wavelet surface). 

We address the interception problem in two approaches. First, we visually 

inspect the 2-D wavelet surfaces to identify and classify the structure of the FH 

signal and obtain an estimate for the hop time interval. Second, we apply a proposed 

processing scheme to estimate the hop start/stop time, the hop-scale pattern, and the 

hop frequency. The extraction of the hop start/stop time is addressed using an edge 

detection approach by applying a compass operator, a technique which is well known 

in the image processing area. The hop-scale pattern is obtained by applying an energy 

analysis. The energy analysis assigns a scale index (called the proper scale) to each 

hop. The proper scale of each hop is that scale which has the greatest energy content. 

The sequence of proper scales, representing the hop sequence, is called the hop-scale 

pattern. The frequency of each hop can be extracted from the wavelet surface at 

the proper scale. Thus, the identification and classification of the FH signal may be 

accomplished as follows: 

1. Based on the hop-scale pattern: 
If two or more wavelet scales are applied, the hop-scale pattern of the FH 
signal will be different from the hop-scale patterns of other digital modulation 
signals. 

2. Based on the frequency diversity: 
If all hop frequencies reside in one scale then the FH signal will have different 
frequency components as a function of the hop intervals. 

This dissertation is organized into eight chapters. In Chapter I, we introduce 

the problem and review related work with a focus on the interception of FH signals. 

In Chapter II, we introduce the most significant signal analysis tools. In Chapter III, 

we derive the wavelet response to correlation functions. In Chapter IV, we derive the 



ICF for the FH signal. In Chapter V, we perform the wavelet analysis of the ICF of 

the FH signal. In Chapter VI, we analyze the processing scheme. In Chapter VII, 

we provide the simulation results. Finally, Chapter VIII contains conclusions and 

recommendations for future work. 

B.     INTERCEPTION OF DIGITAL COMMUNICATION 
SIGNALS 
1.      Introduction 

Interception of communication signals is of interest to a wide range of appli- 

cations in surveillance, intelligence, reconnaissance, geo-location, spectral monitoring 

and jamming [Ref. 1]. 

Digital communication systems can use a large diversity of modulation tech- 

niques. Examples of these techniques are: ASK, BPSK, BFSK, QAM, MPSK and 

MFSK. Interception of digital communication signals consists of detection (identifi- 

cation), classification (feature extraction), parameter estimation, decoding, and de- 

crypting. Through out this dissertation we will use the following definitions: 

1. Detection or identification is the process of discriminating between noise and 
a digitally modulated signal. 

2. Classification (feature extraction) is the process of discriminating between dif- 
ferent modulation types, by obtaining significant parameters or signal constel- 
lation which uniquely specify the modulation type. 

3. Parameter estimation is the process of extracting the control parameters of 
the signal. 

4. Decoding is the process of detecting and correcting the errors of the commu- 
nication channel. 

5. Decrypting is the process of restoring the original information content of the 
transmitted messages. 



2. Interception Tools 

A large number of open-literature publications address the interception of 

digital communication signals. The different signal processing tools used for signal 

interception may be categorized as follows: 

1. Basic tools: Spectral analysis, correlation analysis, and parametric modeling. 

2. Linear tools: Linear transforms including the wavelet transform. 

3. Non-linear tools: Higher-order spectra, spectral correlation, and cyclic-feature 
processing. 

4. Other tools: Eigen-analysis, singular-value decomposition, and stochastic res- 
onance. 

There are two different approaches to address the interception. The first approach 

addresses the interception as a decision-making problem applied to a set of alternative 

hypotheses. This requires statistical decision theory and hence a statistical description 

of the alternatives. The second approach handles the interception as a statistical 

pattern-recognition problem. 

3. Digital Signal Modulation 

Different tools can be used for intercepting digital modulations. For ASK, 

QAM, BPSK, QPSK, and FSK, applications are addressed in references [Ref. 2] to 

[Ref. 14], [Ref. 17] and [Ref. 32]. Since the FSK modulation is related to the FH 

signal, the interception tools for FSK are briefly introduced as follows: 

Spectral correlation and visual inspection is applied for identification of FSK signals 

in [Ref. 2]. Higher-order moments are applied for FSK signals in [Ref. 3]. Wavelet 

analysis of the FSK signal is applied for timing extraction in [Ref. 5, 17] where it is 

shown that the frequency transitions of the FSK signal are related to inflection points 

contained in the scalogram. 



4.      Spread Spectrum Signals 

Interception of spread spectrum signals is addressed in [Ref. 18] to [Ref. 35]. 

There are five conventional techniques to intercept frequency hopped (FH) signals 

[Ref. 18, 19]. These are: 

1. Wideband energy detectors (wide band radiometer), 

2. Optimum-multichannel FH pulse-matched filters, 

3. Maximum-channel filter-bank combiners, 

4. Optimum partial-band FH pulse-matched detectors, and 

5. Partial-band filter-bank combiners. 

These techniques differ mainly in two points. The first difference is in the bandwidth 

of the interception filter(s) relative to the bandwidth of the FH signal. The second 

difference is in the number of parallel channels relative to the number of hopping 

frequencies. Consequently, they differ in the required minimum signal-to-noise ratio 

(SNR) for acceptable performance. 

Time or frequency uncertainty can be minimized by using overlapping tech- 

niques [Ref. 20]. A likelihood-ratio-test detector and a channelized receiver are widely 

accepted as the optimum system for detecting FH signals [Ref. 20] to [Ref. 24]. The 

maximum-likelihood detector (ML), using a bank of correlators, is addressed in [Ref. 

22]. It assumes prior knowledge of the hopping times and frequencies, and one corre- 

lator is designated to each primary frequency region. Results show that the coherent 

ML scheme gives a probability of detection of 0.5 at an SNR of 4.5 dB for a probabil- 

ity of false alarm of 10~9. For the noncoherent ML scheme, this performance requires 

an SNR of about 5.9 dB. 

A generalized likelihood ratio test for a multiple hop observation interval is 

addressed in [Ref. 23]. It assumes prior knowledge of hop frequencies, hop rate, 

and hop times. Using an observation interval of 103 hops and a probability of false 

alarm of 10-3, a probability of miss of 10-5 is achieved at an SNR of 8 dB. The same 

performance requires an SNR of 5 dB using an observation interval of 105 hops. 



Applying wavelet analysis to the interception of FH signals is addressed in 

[Ref. 35]. FH classification is based on locating transition spikes due to frequency 

transitions. The authors suggest using the STFT for the hop frequency estimation 

instead of the wavelet transform because wavelets have varying frequency resolution 

and the FH signal has a wide bandwidth. 



II.        FOURIER ANALYSIS AND WAVELETS 

Signal analysis (expansion, decomposition, or transformation) is a method 

used to represent time signals as a linear combination of elementary building blocks 

(or elementary basis functions). This representation is vital to the area of signal 

processing. Each expansion is defined by its basis functions, or equivalently, its 

basic building blocks. There are numerous linear expansion methods. Well-known 

examples are the Shannon expansion, the Karhunen-Loeve expansion, the Gram- 

Schmidt expansion, the eigen-analysis, and the most popular, the Fourier analysis. 

In this chapter, we summarize the evolution of the analysis tools in three steps. First, 

we introduce the Fourier analysis as used for stationary signals. Then, we introduce 

time-frequency distributions, which can be used to represent time-varying signals. 

Finally, we introduce the concept of the wavelet analysis to represent time-varying 

signals over a time-scale plane. 

A.     FOURIER ANALYSIS 

The major reference for this section is [Ref. 36]. The Fourier transform (FT), 

also called Fourier analysis, is the most popular signal decomposition (expansion). 

The Fourier transform is used to represent a stationary process by decomposing it into 

sinusoidal or complex exponential components. Here, a stationary process is defined 

as a process whose spectrum is not varying with time. Hence, Fourier techniques work 

well and allow successful frequency localization of the spectral components. When 

a non-stationary process is present, its time-varying spectrum requires an additional 

dimension (i.e., time). The major problem with the classical Fourier analysis is that 

it uses an infinitely long sinusoidal or complex exponential basis of functions. This 

makes time localization impossible. 

By classical Fourier analysis we mean the Fourier series (FS), the continuous- 

time Fourier transform (FT), the discrete-time Fourier series (DFS), and the discrete- 



time Fourier transform (DTFT). 

The discrete Fourier transform (DFT), or its fast implementation, the fast 

Fourier transform (FFT), uses finite integration time. The Fourier transform cannot 

give a time resolution better than the integration interval. To cope with the re- 

quirement of tracking time evolution and to provide time localization, the short-time 

Fourier transform (STFT) was introduced. The STFT uses a window function which 

affects the time resolution; that is, the longer the window interval the worse is the 

time resolution. 

1.      Fourier Series 

Given a periodic continuous time signal x{t), with period T, the Fourier series 

(FS) expansion is given by : 

oo 

x{t)=  Y, C{k)^Ukt, (II.l) 
k=—oo 

where 

C(k) = )-1 x{t)e-j2*foktdt (II.2) 

and f0 = Y- 

Note that the expansion coefficients C(k) are evaluated at integer values of k. 

Parseval's relation for this power signal ( recall that power signals have finite average 

power and infinite energy) is given by : 

I        . 00 

Px = ±     \x(t)\2dt=   £  \C(k)\\ (II.3) 
T JT fc=-00 

where Px is the average power of the signal. The signal has to satisfy the Dirichlet 

conditions to have a valid Fourier series expansion. These conditions can be summa- 

rized as: the signal has a finite number of discontinuities, a finite number of maxima 

and minima, and it is absolutely integrable (over one period). 



2.      Fourier Transform 

A non-periodic continuous time signal, x(t), can be represented as 

/°° .„ . 
X(f)e**»<V, (II.4) 

-00 

where 
/oo 

x{t)e-j2*ftdt. (II.5) 
-00 

Note that both the signal and the transform are continuous functions of time and 

frequency, respectively. 

TheDirichlet conditions have to be met by the non-periodic signal with one 

modification; that is, the time support of the signal is considered instead of the period 

in the above-addressed Dirichlet conditions. 

Parseval's relation is given by 

\x(t)\2dt =        \X(f)\*df (II.6) 
-00 J— 00 

where Ex is the total energy of the signal. 

Short-Time Fourier Transform. Because of the lack of time localization, non- 

stationary signals have time-varying spectra which cannot be represented by the clas- 

sical Fourier transform. The time evolution of the time-varying spectra needs to be 

considered. Hence, there is a need for an expansion in time and frequency such as the 

short-time Fourier transform (STFT). This transform windows the signal around a 

certain time instant, performs the frequency domain analysis, and repeats the process 

at other time instants. Note that it is assumed that the windowed signal will have 

a non-time-varying spectrum (local stationarity) within the time window. Therefore, 

the STFT for a continuous signal x(t) is given by 

/oo 
x(t)g*(t - l)e~jutdt, (II.7) 

-00 

where g(t) is the window function. X(v, I) is the spectral description of x(t) when the 

window is centered at the time I. When the window g(t) has a Gaussian shape, the 



STFT is called the Gabor transform. The STFT depends on a window function with 

a fixed width (in time). Recall that the time localization and frequency localization 

of the STFT are controlled by the window width. Consequently, the STFT offers 

a fixed-time resolution and a related fixed-frequency resolution, which results in a 

uniform tiling in the time-frequency plane. 

The time and frequency resolution are governed by the uncertainty principle, 

which will be addressed shortly. For details, see [Ref. 38]. The STFT for discrete 

time signals is defined as 
oo 

X{k, n) = £ g(m - n)x{m)e-j2i:k^, (II.8) 
m=oo 

where k = 0,1,..., M - 1. 

3.      Discrete-Time Fourier Series 

The discrete-time Fourier series (DTFS) for a periodic discrete signal x(n) 

with period N is given by 

x(n) = ]T C(k)ej2*k%, (II.9) 
k=0 

and 
N-l 

C(k) = ^f:x(n)e-^k%, (11.10) 

where C(k) represents the expansion coefficient at the discrete frequency wfc = 27rfc-^. 

Parseval's relation is given by 

Px = Nf\C(k)\2 = ^j:\x(n)\2 (11.11) 
k=0 -1    n=0 

where Px is the average power of the infinite energy periodic signal x(n). The Dirichlet 

conditions must be met by x(n). 

4.      Discrete-Time Fourier Transform 

The discrete-time Fourier transform (DTFT) for finite length non-periodic 

discrete signals is given by 

x(n) = ±- f X{u)e?undw, (11.12) 
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where 
oo 

X(u)=   £ x(n)e~jun. (11.13) 
k=—oo 

Note that the discrete frequency co ranges from —7r to IT. Parseval's relation 

is given by 
oo -I     r 

Ex=   £   \x(n)\2 = ±    \X(u)\2fa, (11.14) 

where Ex is the total energy of the signal. 

Discrete Fourier Transform. A finite-length non-periodic discrete signal has a 

continuous-frequency-domain representation X(OJ). For digital signal processing it is 

easier to represent X(co) by its discrete-frequency samples. This leads to the discrete 

Fourier transform (DFT). The DFT is given by 

^) = FE^)^ (IL15) 
and 

*(*) = I>(n)W*\ (11.16) 
n=0 

where WN = e1^ and n,k = 0,1,- --,N - 1. The DFT requires N2 complex 

multiplication operations and N(N—1) complex addition operations. The fast Fourier 

transform (FFT) implements the DFT with fewer multiplications. The FFT has 

computation complexity (number of multiplications) ^log^N if N is power of 2. 

B.     TIME-FREQUENCY DISTRIBUTIONS 
1.      Introduction 

A time-frequency distribution (TFD) describes non-stationary signals by dis- 

playing the energy density over time and frequency simultaneously. Let the signal 

and its Fourier transform be denoted by s(t) and S(u), respectively. The following 

terms and definitions [Ref. 38] are useful in TFD discussions: 

• Energy density or instantaneous power is given by 

\s(t)\\ (11.17) 
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• Total energy of the signal is given by 

f\s(t)\2dt. (11.18) 

• Mean time is given by 
(t) = Jt\s(t)\2 dt. (11.19) 

• Time variance is given by 

'*? = /'(* - (t)f \s(t)f dt, (11.20) 

where a2 is an indication of the duration of the signal. 

• Energy density spectrum is given by 

\S(u)\2. (11.21) 

It is the intensity per Hertz near the frequency u. 

• Parseval's theorem states that 

J \S{u)\2du = j \s{t)\2dt. (11.22) 

• Mean frequency is given by 

(üJ) = Ju>\S(u)\2du. (11.23) 

• Frequency variance is given by 

al = j {u-(u)f\S{u)\2dw, .   (11.24) 

where o^ is an indication of the rms bandwidth. 

• The uncertainty principle: 

It is a fundamental statement regarding the Fourier transform pairs. It governs 
the relationship between the spread of any signal in the time domain and in 
the frequency domain. This relationship is given by atau > 1/2. This means 
that there is a trade-off time localization and frequency localization. 
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and 

2.      Fundamental Properties of Time-Frequency 
Distributions 

The major reference for these properties is [Ref. 38]. Let p(t: u) be the inten- 

sity of the signal s(t) at time t and frequency u>. Then p(t,u)AtAuj is the fractional 

energy in the cell At Aw at time t and frequency u. Basic properties of the TFD are 

given by: 

• Marginal property: Summing up the energy distribution for all frequencies at 
a particular time gives the instantaneous energy. Summing over all times at a 
particular frequency gives the energy density spectrum, i.e., 

Jp(t,co)dio = \s(t)\2 (11.25) 

fp{t,u)dt=\S(u)\2. (11.26) 

Note:   Any joint distribution that yields the correct marginal property is con- 
sistent with the uncertainty principle. 

• Total energy property: The total energy of the distribution should be equal 
to the total energy of the signal. 

E = j fp(t,w)du)dt= f\s(t)\2dt = f\S(u)\2dw (11.27) 

Note:   If the distribution satisfies the marginal property then the total energy 
property is automatically satisfied. 

• Time-shift-invariance: The shifted signal s(t — to) will have the distribution 
p(t-t0,u>). 

• Prequency-shift-invariance: The modulated signal s(t)ej& will have p(t,u — £) 
as its distribution. 

• Time and frequency shift invariance: The signal s(t — t0)e
j& will have p(t - 

*0J 
W
 
— 0 as its distribution. 

• Linear scaling property: The signal ssc(t) = y/as{at) will have the distribution 
Psc{t,u) = p(at,w/a), which will satisfy the marginal property of the scaled 
signal ssc(t). 

• Weak finite-support property: If s(t) has zero value outside the time interval 
(ti,t2) or outside the frequency range (couw2), so does the distributionp(t,u). 
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• Strong finite-support property: If s(t) has zero value at any time to or at any 
frequency uQ, then p(t, u) will be zero for any time to or frequency co0. 

Note: It is impossible for the signal /(£) to be both time and frequency 
limited. Therefore, if a distribution satisfies the weak finite-support property, 
it cannot be limited to a finite region of time-frequency plane. 

3.      Wigner-Ville Distribution 

The major reference of this topic is [Ref. 38, 39]. The reason the Wigner-Ville 

distribution (WVD) is discussed in detail is that we relate the WVD and the wavelet 

transform of the instantaneous correlation function. Another reason is that the WVD 

is typically used to represent a non-stationary process. 

The WVD, in terms of the signal s(t) or its spectrum S(u), is defined by: 

W(t,u) 5]£'(TrK-r)'-*-        <-*> 
and 

• 

4.      Properties of the Wigner-Ville Distribution 

The WVD has the following properties: 

The WVD is always real, even if s(t) is a complex signal.   This is because 
W(t,u) = W*(t,u). 

• The WVD satisfies the following symmetry relations: 

W(t,w) = W(t,-u)   if   s{t)   is real, i.e., if   S{u) = S(-w), 

and 

W{t,u) = W(-t,u)   if   S{u)   is real, i.e., if   s(t) = s(-t). 

• The marginal property is satisfied in both time and frequency. Hence the total 
energy property is also satisfied. 

• The time and frequency shift invariance properties are satisfied. 
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For s(t) = A(i)eJ<^ the conditional spread in frequency is given by 

"2/* = (^2)t - l("H2 = 0.5 
\A'(t)] 
[A(t)\ 

2 \A"(t)] 
[ A(t) \ 

(11.30) 

where "/" denotes the time derivative. Since Equation 11-30 may result in neg- 
ative values, it cannot be properly used as a measure of bandwidth. Therefore, 
while WVD can be used to compute a reliable mean frequency, it cannot be 
used to obtain reliable values for the spread of those frequencies. 

• WVD of sum of two signals: If s(t) = S\(t) + S2{t), then the WVD is given by 

W(t,u) = Wu{t,u) + W22{t,u) + W12(t,u) + Wn(t,co), (11.31) 

where 

is the cross WVD. The cross WVD is complex-valued, but W\2 = W^- Hence, 
Wi2(t,u)) + W2\{t,u)) is real and we can express W(t, w) as: 

W(t,w) = Wn{t,u) + W22{t,u) + 2Re [Wl2(t, w)]. (11.33) 

The additional term 2Re[Wi2(t,w)] is often called the cross term or the inter- 

ference term. 

Note: The signal is said to be composed of more than one signal (i.e., multi- 

component signal) if it can be segmented into separate regions in the time-frequency 

plane. 

Note: The WVD at time t depends on the values of the signal at the time 

moments (t — r/2) and (t + r/2). Even if there is no noise at time t, the WVD will 

reflect the noise component existing at those time moments (t — r/2) and (t + r/2). 

There are other types of TFDs, all forming one class, called the general Cohen's 

class. Cohen's class incorporates different kinds of TFDs which differ only in the 

definition of the window function. Window functions may be chosen to optimize the 

TFD according to certain criteria. One example of this criteria might be to minimize 

cross terms. 
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C.     WAVELET ANALYSIS 

Wavelet analysis is a new trend for representing non-stationary signals. It is 

widely applied for many areas of signal processing. In the following discussion we 

introduce the basic concepts of wavelet analysis. 

1.      Frames 

A basis for a vector space V is a set S of vectors in V such that S is linearly 

independent and S spans V [Ref. 41]. Therefore, a basis can express any vector 

in the space V by a linear expansion. The resultant set of expansion coefficients is 

unique. Completeness and uniqueness of the expansion coefficients are directly related 

to the exact reconstruction of the original vector from the expansion coefficients. 

This property is required in signal processing applications which use the expansion 

algorithm to reconstruct the original signals. For simple computation of the expansion 

coefficients, the vectors of S are required to be orthogonal. Orthogonality will make it 

possible to compute the expansion coefficients (analysis) using simple inner products 

with the basis vectors. Reconstruction (synthesis) and decomposition (analysis) are 

done using the same set of basis vectors. 

Orthogonality of the basis vectors (or basis functions) is defined as follows: 

the set of basis vectors Vk (t) is said to be orthogonal if 

(«*(*), vm(t)) = akjmS(k - m), (11.34) 

where k, m are integers, a,k>m is a constant and 6 is the Kronecker delta function. The 

delta function 6(k — m) will be zero everywhere except where m = k it will be one. 

Since the orthogonality is not a condition for having a set of basis vectors, we may 

find a set of non-orthogonal basis vectors. For any orthogonal set of basis vectors Vk{t) 

the finite energy time signal f(t) can be expanded using the set of basis functions 

Vk{t) as: 

'N-?]» (I,'35) 
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where 

ak = (f{t),vk{t)), 

and ||ufc(i)|| is the I? norm of the vector Vk(t). Further, if we assume unit L2 norm for 

the vectors vk(t), the vectors become an orthonormal set, and the expansion formula 

will be 

/(*) = £«*»*(*)» (11.36) 
k 

where 

ak = (/(*), vk(t)). 

It is worth mentioning here that due to orthogonality (or orthonormality) both 

the analysis and synthesis of the expansion are carried out using the same set of basis 

vectors. 

For a biorthogonal basis, we need two different sets of basis vectors, the original 

set vk(t) (the basis) for the expansion and a dual set vk(t) (dual basis) for reconstruc- 

tion (or synthesis). The sets of the basis and the dual basis are not orthogonal, but 

each vector and its dual are orthogonal. The expansion is given by 

/(*) = !>«*(*)» (IL37) 
k 

where 

ak = (f(t),vk(t)). 

If the set S of the expansion vectors does not satisfy the linear independence 

condition stated above, then the set is called a "frame." Expansion with frames does 

not maintain uniqueness of expansion coefficients [Ref. 37]. Also, the exactness of 

the reconstruction will be replaced with an approximate representation. For more 

details about the theory of frames see [Ref. 42, 43]. Frames do not satisfy the 

Parseval's theorem of energy, which states that the energy in the original function 

will be distributed among the expansion coefficients without loss or gain. For frames, 

the total energy in the expansion coefficients will have two bounds A and B such 
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that: 

^ll/ll2<EK/(^^W)l2<ßll/H2 (IL38) 
k 

where 0 < A, B < oo. Note that if A = B, then the frame is called a tight frame and 

AWfW^EimMt))]2- (n.39) 
k 

If A = B = 1, then the frame becomes an orthonormal set and 

ll/ll2 = £l(/(*W*)>l2, (n.40) 
k 

which is the the Parseval's theorem. 

There are different categories of wavelets, orthogonal wavelets, non-orthogonal, 

and biorthogonal wavelets. The Daubechies family, Symmlet, Coiflet, and Meyer 

wavelets are examples of orthogonal wavelets, while the Morlet wavelet is an example 

of a non-orthogonal wavelet. As mentioned earlier, not all applications of signal 

expansions require perfect reconstruction. Applications such as signal identification 

and classification are examples of this type. Therefore, unless the orthogonality is 

required to meet another criteria, we can exploit non-orthogonal wavelet transforms. 

2.      Continuous Wavelet Transform 
The continuous wavelet transform (CWT) forms the mathematical basis for 

wavelet analysis. The concept behind wavelet analysis is that all basis functions can 

be generated from a single function called the mother wavelet, usually denoted by 

ip(t). Other wavelets can be generated using two distinct operations; scaling and 

translation. Scaling means expanding (dilating) or compressing the wavelet function 

according to a specific scaling value. The scale will be denoted by s. The translation 

allows shifting of the (scaled) wavelet to a desired position in time. This shift will be 

denoted by k. The scaled and translated wavelet is denoted by 

iM*) = ^ (^) , (IL41) 

where ■>/£ is a normalization factor to maintain the L2 norm of ips,k(t) to be constant 

at any scale s . 
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The integral form of CWT of the finite energy signal f(t) with respect to the 

wavelet function iß(t) is given by [Ref. 42, 46] 

/oo 
fms,k(t)dt, (11.42) 

-00 

or 

Wf(s, k) = -j= |_~ f(t)1> (^j dt. (11.43) 

The wavelet analysis is carried out by computing inner products (projections) 

between the signal and the wavelet functions. We can also interpret the wavelet anal- 

ysis as a linear operation which transforms the signal using modified kernel functions, 

where the kernel of the transform is the mother wavelet, and the modifications are the 

scaling and the translation operation [Ref. 44]. If the wavelet function satisfies the 

admissibility condition, we can apply the rule of the resolution of identity to recover 

the signal from its wavelet transform. The admissibility condition is given by [Ref. 

44] 

= f°° \*{v)\ ^ < (IL44) 
./-oo       \CV\ 

where \f(a;) is the Fourier transform of iß(t). This condition will be true if \l/(0) = 0 

or equivalently 
/oo 

1>(t)dt = 0. (11.45) 
■00 

The admissibility condition implies that the wavelet has a zero mean (i.e., DC com- 

ponent is zero). Therefore, it can be interpreted as a bandpass function. This implies 

that the wavelet must be an oscillatory function. The recovery (synthesis) formula, 

extracted from the resolution of identity rule, is given by 

/•oo    />00 

f(t)=        /    Wf(s,k)i>$,k(t)dsdh. (11.46) 
•Zoo   -Zoo 

3.      Properties of Continuous Wavelet Transform 

The following properties of the wavelet ransform are given below without proof. 

More details can be found in [Ref. 45]. 
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1. Linearity: The wavelet transform is a linear operation on the analyzed signal. 
If the signal f(t) is given as: 

/(t) = /i(*) + /2(tj, (H.47) 

then the wavelet transform of f(t) is given by 

Wf(s,k) = Wfl(s,k) + Wf2(s,k). (11.48) 

2. Shift-invariance: The CWT is shift invariant. If g(t) = f(t- t0), then it has 
a CWT given by 

Wg{8,k) = Wf{s,k-t0). (11.49) 

3. Time-scaling-invariance: If g(t) = ^j/(f), then it has a CWT given by 

W,(8,k) = Wf(l±y (IL50) 

4. Parseval's relation for the CWT becomes: 

r H/wii2*=^-rr mi*, fc)n2^f    (11.51) 
7oo L/tf Joo   Joo o 

implying that the CWT conserves the signal energy. 

5. Time localization: From the definition of CWT and by the sifting property of 
.  the Dirac delta function, the CWT of an impulse at time t0 will be [Ref. 47] 

775^(^7*)- This means tnat tne response of the CWT, at any scale s, will be 
a scaled and time reversed replica of the mother wavelet centered at location 
t0 on the shift axis (k). Therefore, the ability to define the location t0 will 
depend on the width of the scale wavelet. And since, a smaller scale value will 
result in a shorter wavelet, the time localization will be more precise. 

6. Frequency localization: In fact, the uncertainty principle controls the time 
and frequency resolution of the wavelet transform at any scale, as the smaller 
the scale is the shorter the wavelet and the wider its frequency representation 
are. Consequently, the shorter wavelet has worse frequency localization than 
the original wavelet. Generally, the time localization is better at smaller scale 
values while the frequency localization is better at larger scale values. 

4.      Scalogram 

Using a scalogram, the finite energy signal f(t) is represented by the distribu- 

tion of \Wf (s, k)\2 over the time-scale plane. From Parseval's theorem for the wavelet 
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transform, Equation 11-51, integration of \Wf(s,k)\2 with respect to the differential 

^r provides the total energy. By the definition of the scaled wavelet function in 

Equation 11.41, the scale value s is inversely proportional to the frequency. Hence, 

the differential ^f is proportional to the differential of the frequency. Therefore, the 

quantity \Wf(s, k)\2 may be viewed as a spectral density in units of power per Hertz 

[Ref. 44]. Consequently, the scalogram represents the power spectral density of the 

signal over the time-scale plane. Finally, we have the quantity 

7^fV/M)ll2$      . (n.52) 
G.0 Joo S 

which represents the signal instantaneous power, while the quantity 

-^~2 I
00 r Wf{sM?dk (11.53) 

O.0S   Joo   Joo 

represents the portion of the signal energy contained within the scale s. This fact 

is exploited in identifying the scale of each hop. In summary, the CWT is a linear, 

time-shift-invariant, time-scaling-invariant, and frequency-scaling-invariant operator. 

5.      Discrete Wavelet Transform 
The CWT is defined by an integral transform over continuous variables in 

the scale s and the time shift k. Hence, performing the CWT requires expensive 

computations. Therefore, in practice a discrete grid for s and k is used. A widely 

accepted discretization is to specify s = s™ and k = nk0s™, where m and n are 

integers, and s0 > 1, and k0 > 0 [Ref. 45]. Furthermore, if we select s0 = 2 and 

k0 = 1 we obtain the well-known dyadic wavelet sampling (tiling) grid. Hence the 

scaled and translated wavelet indexed by m and n is given by 

i)m,n{t) = 2=?i>{2-mt-n). (11.54) 

Figure 1 shows the time-frequency tiling of the STFT while Figure 2 shows the time- 

scale tiling of the wavelet transform. 
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In digital signal processing there are two related concepts that help under- 

standing the wavelet transforms: the multiresolution analysis and the filter-bank 

theory. These concepts are discussed next. 

6.      Multi-Resolution Concepts in Discrete Wavelet 
Transforms 

Introduction. We will briefly introduce the WT from the perspective of the mul- 

tiresolution analysis (MR). The signal (or the time function) f(t) is expanded in 

terms of the wavelet functions. These wavelets have a frequency bandpass shape, so 

they result in a set of successive details of the signal. For the approximation we need 

a special basis, called the scaling function (f>(t), which is not a wavelet. It has a low 

pass frequency behavior and performs averaging. The discrete wavelet transform is 

given by 
00 00 00 

f(t)= £ c(*)&(t) + £ £ d{j,k)i>{j,k)[:), (n.'55) 
k=—oo i=0 k=—oo 

where j and k are integers, the coefficient c(k) constitutes the coefficients of the 

approximation, while d(j, k) constitutes the coefficients of the added details or equiv- 

alently the fine resolutions [Ref. 47]. If the wavelets and the associated scaling 

functions form an orthonormal set of basis functions the coefficients are given by 

c(*) = </(*), &(*)), (IL56) 

and 

d(j,k) = {f(t),^k(t)). (11.57) 

The expansion form of the DWT is related to the subspace representation. Let 

us define the following subspaces: Vj is the scaling space at the jth level, and Wj is the 

wavelet space at the j** level. Let Vj+i = Vj+Wj. This means that the approximation 

at the (j + l)st level (or scale) can be represented by a coarser approximation Vj and 

a coarser detail Wj, both at the jth level. Note that the subspaces Vj are spanned by 

the scaling functions <fo(£) and the subspaces Wj are spanned by the wavelet functions 
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Subspaces have to satisfy a set of conditions to become an MR representation. 

These conditions are [Ref. 46]: 

1. Orthogonality and completeness: 

VjHWj   =   {0}. 

VjQW, = vj+l. 

00 

VjfB'EW,   =   L\ (11.58) 
3=0 

2. Scale-invariance: If f(t) G V} then f(2t) G Vj+l. 

3. Shift-invariance: If f(t) G Vj then f(t — k0) G Vj for a given constant k0 . 

Scaling and Wavelet Equations. The MR subspace representation leads to a 

method to formulate two equations in terms of the unknown scaling and wavelet 

functions. Prom the orthogonality and completeness property we deduce that Vb C 

Vi. This means any function living in V0, e.g., (f>o(t), can be expressed as a linear 

combination of functions living in Vi, e.g., (j)\{t). Hence, by substitution we get 

<fi(t) = \/2£h0(k)(f>(2t - k), (11.59) 
k 

where <j)0(t) = (j)(t) and (f>x(t) = 4>(2t). This equation includes two different scales of 

the scaling function and is known by many names: the scaling equation, the dilation 

equation, the refinement equation, or the multiresolution-analysis equation. The 

coefficients h0(n) are called the scaling filter coefficients. Using the condition, V0 ® 

Wo = Vi, which implies that W0 C Vi, we have 

</,(*) = ^2~Y, h(k)(j>(2t - k) (11.60) 
k 

also is called the wavelet equation. The coefficients hi{n) are called the wavelet filter 

coefficients. 

In summary, an MR approach leads to a complete orthonormal set of the 

scaling and wavelet functions. Moreover, if the scaling function has compact support, 
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the wavelet function will be built up of a finite number of the scaling multipliers. 

Therefore, the scaling and the wavelet functions can be realized by finite-impulse- 

response (FIR) filters. For more details about wavelet and scaling equations see [Ref. 

47, 42]. 

For discrete data the filter-bank concept leads to a simple method for com- 

puting the wavelet coefficients. The wavelet function is replaced by the coefficients 

of the wavelet filter hi(n) and the scaling function is replaced by the coefficients of 

the scaling filter h0(n). In [Ref. 46, 47, 42], the following two recursive equations are 

obtained: 

c(j,k)   ~   Ylho{m-2k)c(j + l,m) 
m 

d(j,k)   =   £fti(m-2fc)c(j + l,ro). (IL61) 
m 

These two recursive equations enable us to compute the jth scale wavelet trans- 

form from the (j + l)st scale using h0(m) and hi(m). The factor 2 in front of the 

parameter k decimates the output wavelet coefficients by 2. Figure 3 shows the re- 

alization of the recursive equations. This realization is equivalent to the well-known 

2-band analysis bank of filter implementation. The implementation of the discrete 

wavelet transform using the recursive procedure is known as Mallat's algorithm. Fig- 

ure 4 shows a multi-stage wavelet analysis bank and the corresponding ideal subspace 

designation (or spectral decomposition). 

7.      Daubechies Wavelet Family 

The Daubechies wavelet family is a compactly supported orthonormal set of 

wavelet functions [Ref. 42]. The Daubechies wavelet are generated by solving the 

scaling and wavelet equations. An additional set of constraints is applied to satisfy the 

maximum number of vanishing moments for each wavelet. Each Daubechies wavelet 

is assigned a number related to the number of vanishing moments, hence, each wavelet 

is denoted as Daub-N. There are two conventions in assigning the number TV; the first 

one is to let N refer to the number of vanishing moments; the second one is to let N 
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refer to the length of the wavelet filter (i.e., the number of wavelet coefficients). We 

will adopt the first designation since it is adopted by the MATLAB Wavelet Toolbox, 

where each Daubechies wavelet is expressed by the coefficients of its scaling filter. 

The coefficients of the wavelet filters are the interpolated high pass versions of the 

scaling filter. The Daubechies wavelet of order N has 2N coefficients, and has finite 

support over [0,2N - 1]. The number of vanishing moments is an indication of the 

smoothness of the the wavelet filter, since the number of vanishing moments will 

imply the number of zeros of ^(w) at w = -re. The higher the order the longer and 

smoother is the Daubechies filter. 
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Figure 1. Time-Frequency tiling of the STFT. 
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Figure 2. Time-Scale tiling of the wavelet transform. 
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Figure 3. Recursive computation of wavelet coefficients. 
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Figure 4. Multiple-Stage wavelet analysis bank and its subspace designation. 
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III.        WAVELET TRANSFORMS AND 
CORRELATION FUNCTIONS 

Correlating two functions results in a measure of similarity between them 

and is accomplished by evaluating an inner product. Correlation analysis has been 

used extensively in the signal processing and communication area, e.g., in spectral 

estimation, system modeling, signal detection and parameter estimation. 

The Wiener-Khinchin theorem relates the signal's auto-correlation function 

and power spectral density for a stationary stochastic process, through a Fourier 

transform. Due to their time-varying spectra, FH signals are non-stationary and can 

be represented using time-frequency distributions. Traditionally, Fourier kernels are 

used in the time-frequency distributions. 

Wavelet decomposition can be used to represent non-stationary signals over the 

time-scale plane. Therefore, we will consider the wavelet transform of the correlation 

function as an alternative for non-stationary signal representation. 

In this chapter, we will introduce different choices for the correlation function 

and derive the corresponding wavelet transform response. In the derivation of the 

wavelet transform we will use the analytic definition of the correlation function and 

the wavelet function without specifying a functional form. 

A.     CORRELATION FUNCTIONS 
1.      Definitions of Auto-Correlation Functions 

Depending on the underlying process, various definitions are given to the 

auto-correlation function (ACF). The process may be deterministic, stochastic, finite- 

energy, infinite-energy, non-time-varying (stationary) or time-varying (non-stationary). 

Next, we will introduce the different definitions of the ACF. The main reference for 

this topic is [Ref. 51]. 

1. Deterministic ACF: The ACF is defined for deterministic, infinite-energy, and 
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non-time-varying signals by 

R{r)=^hf-Tx{t)x*{tJrT)dh (IIL1) 

where "T" is the observation interval and "r" is the time lag or the time delay. 
For finite energy signals the ACF is defined as: 

/oo 
x(t)x*(t + r)dt. (III.2) 

■00 

For stationary signals or processes (i.e., wide-sense stationary) R(t,r) is a 
function of the time delay only, hence, it is denoted by R{r). For a non- 
stationary signal, Ä(t, r) will be represented by a 2-D surface over the time 
"t" and the time delay "r". 

2. Stochastic ACF: The ACF of a stochastic process is the correlation between 
two samples of the process taken at t\ and t2l and is defined as: 

R(tl,t2) = E{x(t1)x*(t2)}, (III.3) 

where E is the expectation operator and '"*" stands for the complex conju- 
gation. For a stationary (or wide-sense stationary) process, #(£1,^2) depends 
only on the time lag r = t2 — h, resulting in a stationary spectrum. For a non- 
stationary process, R(ti,t2) depends on the time instants t\ and t2, resulting 
in a time-varying spectrum. 

2.      Properties of Auto-Correlation Functions 

We will briefly introduce the significant properties of the ACF for finite-energy 

signals. For more details see [Ref. 36, 52]. 

1. Conjugate symmetry: 
R(t,r) = R(t,-r)*, .   (III.4) 

i.e., the real part of R(t, r) is an even function with respect to the lag r while 
the imaginary part is an odd function. 

2. Mean-squared value: 
R(t,T)\T=0 = E{\x(t)\2}. (III.5) 

3. Positive definiteness:  The ACF, denoted by R(ti,t2), is said to be positive 
definite if 

Y^a^Ritut^^O (111.6) 

for any a;,aj 7^ 0. Positive definite property of the ACF guarantees that the 
spectrum of the signal is non-negative. 
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4. Wiener-Khinchin theorem: 

R(T)e-^fTdr. (III.7) 
-oo 

The power spectral density function Sxx(f) of the stationary signal is ob- 
tained by Fourier transforming its (positive definite) ACF. Note that the non- 
stationary signals have time-varying spectra, therefore, no power spectral den- 
sity is defined. 

3.      The Instantaneous Correlation Function 

The ACF of deterministic and stochastic processes are computed using time 

domain averaging and the expectation operator, respectively. This means that a 

smoothing process has to be applied to compute the correlation functions. 

The instantaneous correlation function (ICF) does not use an averaging oper- 

ation (integration nor expectation). The instantaneous correlation function is defined 

as the product of two samples of the process. These two samples are drawn at two 

time instants centered about time t. The instantaneous correlation function Rl{t,r) 

is defined as: 

R%r)=x(t + ^)x*(t-^), (III.8) 

where "i" stands for the instantaneous nature of the correlation function. 

Rl(t,r) satisfies the following properties: 

1. Conjugate symmetry, i.e., 

Ri{t,r) = Ri*(t,-r). (III.9) 

2. Squared value, 
Ri(t,r)\T=0 = \x(t)\2, (111.10) 

i.e., at r = 0 , Ä8(i,r) will represent the instantaneous power of the signal at 
time T. 

If x(t) is a sinusoidal signal then multiplication of the instantaneous values of 

x(t) in the sense of Equation III-8 will generate cross terms in the ICF. For example, 

the real-valued sinusoidal signal x(t) = Acos(ut) has an ACF given by: 

A2 

R(T) = —COS{UT), (III.ll) 
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while the ICF is given by: 

A2 

R*(t, r) = — [cos(2u;i) + cos(wr)]. (111.12) 

The ACF of a single sinusoidal signal has only one component and no cross 

term, while the ICF has cross terms. If the signal x(t) is represented by its analytic 

form, say x(t) = Aexpjut, then its ICF is given by: 

Ri(t,r) = A2exp(jur). (111.13) 

That is, the ICF of a single complex exponential signal has no cross term. Therefore, 

to minimize cross terms it is recommended to use the analytic form of the input 

process in the computation of the Time-Frequency Distributions [Ref. 49]. In this 

dissertation, we will focus on the analytic form of the signals. Therefore, the first 

step of the processing scheme will be transforming the intercepted (real) signal using 

the Hubert transform technique. 

Another point worth mentioning is the exploitation of the conjugate-symmetry 

property of the ICF. In computing the surface of the ICF we need to compute only 

half the ICF surface, corresponding to positive (or negative) time lag "r". The other 

half can be generated by the conjugate-symmetry property. This implies that the 

second half of the surface of the ICF carries no additional information. Therefore, 

the processing scheme may be applied to only one half of the ICF surface which will 

save computational cost and storage. 

B.     WAVELET TRANSFORMS OF CORRELATION 
FUNCTIONS 

In Chapter II, we discussed the linearity property of the wavelet transform 

which allows the application of linear system theory to the wavelet transform. In this 

section, we will investigate the wavelet transform for the different definitions of the 

correlation function. 
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1.      The Wavelet  Transform of the Auto-Correlation 
Function 

The wavelet transform of the stochastic ACF of a stationary process is ad- 

dressed in [Ref. 48], similarly, we will address the ACF for a deterministic signal. 

Wavelet transform of the ACF will have similar results. For a deterministic, finite- 

energy, stationary signal, the (time-averaged) ACF is given by: 

/oo 
x(t)x*(t + T)dt. (111.14) 

-00 

From the Wiener-Khinchin theorem we get 

R(r)e-^fTdr. (111.15) 
-oo 

Let Wxx(s, t) denote the Wavelet transform of R(r). Note, the subscript "xx" 

in Wxx(s, i) stands for the wavelet transform of the ACF of x(t) (in contrast to 

Wx(s,£) which denotes the wavelet transform of x(t)). The wavelet basis function 

is denoted by g(r). The wavelet transformation will be carried over the time lag 

variable "r" to the wavelet shift variable "f and the wavelet scale "s". Wxx(s, £) is 

then given by: 

Wxx(s, i) = -^ £^ R(r)g* (^\ dr. (111.16) 

Let G(f) denote the FT of g(r), then 

FT{g {^\} = |*| G(sf)e-^£. (111.17) 

For positive scale values , "s", g f2^) is given by: 

g C^) = /_" sG(sf)e-j2*feej2*frdf. (IIL18) 

We can write Wxx(s,€) as: 

/oo    roo 
/    R{T)e-j^fTdTG*(sf)ej2^rdf, (111.19) 

-oo J— oo 

or 
/oo 

Sxx{f)G*{sf)e^ldf. (111.20) 
-oo 
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Equation III.20 has the form of an inverse FT from the variable / back to the 

variable t. Therefore, we can write 

W„(s,t) = FT-M(v^(/)G*(s/))}. (111.21) 

From Equation 111.21 we deduce the following: 

1. The wavelet transform, of a finite-energy signal, at any wavelet scale s ^ 0, 
represents a linear filtering operation using a band pass filter whose impulse 
response is the (time-reversed) wavelet function at the scale s. Equivalently, 
the filter has a frequency response given by the FT of the scaled wavelet. 

2. The wavelet transform of the ACF, --R(r), of the stationary finite-energy signal 
x(t), gives a band pass filtered version of the power spectral density Sxx(f) of 
this signal (up to a constant, y/s), the used band pass filter is dependent on 
both the chosen wavelet function and the chosen wavelet scale. 

2.      The Wavelet Transform of the Instantaneous 
Correlation Function 

The Wigner-Ville Distribution (WVD) is used to represent non-stationary pro- 

cesses since they are characterized by their time-varying spectra. The WVD applies a 

one-dimensional Fourier transformation to the ICF. The Fourier transform is carried 

out taking the time delay r to the frequency /, keeping the global time t unchanged. 

This allows for displaying the time evolution of the spectrum of the signal. For 

one-dimensional time signals, the one-dimensional wavelet transform carries out a 

transformation from one global time variable "£" to the two wavelet variables, the 

shift £ and the scale s. Consequently, the signal is represented by a time-scale distri- 

bution in the wavelet domain. The wavelet domain is called the time-scale domain. 

For the two-dimensional surface, indexed by time "£" and the delay "r", we carry out 

the wavelet transformation along the time delay. This permits a display as a func- 

tion of time. In this section, we will derive the relation between the time-frequency 

representation of the signal x(t) using the WVD and the time-scale representation of 

the same signal using the wavelet transform of the ICF. 
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Let Vx(t, f) denote the WVD of the signal x(t), 

Vx(-tj)=IZx{{t~^)x* {t+l)e~j2*fTdr-      (IIL22) 

Since the ICF of the signal x(t) is defined as: 

Ri(t,r) =*(*-§)*'(* + £)» (IIL23) 

where r is time shift (or time delay) relative to time t. The WVD may be defined as: 

Rl(t,T)e-^fTdT. (111.24) 
-00 

The wavelet function g(r), has been scaled by s and shifted by I along the r axis, to 

form gs,t{f) which is given by: 

gsA(r) = -j=g (^\ ,        for s > 0. (111.25) 

Let G(f) denote the FT of g(r), thus 

FT{g (^) } = s G(sf)e-^V. (111.26) 

Then 

g (r^A = /_°° sG(sf)e-j2*feej2*fTdf. (111.27) 

Let W£x(t; s,£) be the wavelet transform of the ICF Rx(t,r). Note that the 

superscript "i" indicates the instantaneous feature of the ICF. W*x(t; s,£) is given by: 

.     WUH sJ) = -^ /~ Mt, r)g* (^) dr. (111.28) 

Substituting g* (^) from Equation 111.27 into Equation III.28 and exchang- 

ing the integration operations we get 

/oo r poo i 
G*(sf)\       Rx(t,T)e-^dr e?2^df. (111.29) 

-oo U —oo J 

Substituting Equation 111.24 into Equation 111.29 we have 

/oo 
G*(sf)Vx(t,f)e^f£df. (111.30) 

-oo 
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Equation 111.30 is in the form of an inverse Fourier transform. Therefore, Wxx(t; s, £) 

and \fsG*(sf)Vx(t,f) are a Fourier transform pair with respect to the variable "f, 

i.e., "f. This relation suggests that we can obtain a filtered version of the WVD by 

Fourier transforming the Wxx(t; s, I). 

38 



IV.        FREQUENCY HOPPED SIGNALS AND 
THEIR CORRELATION FUNCTIONS 

Communication systems can utilize a large number of digital modulation tech- 

niques. Among those, spread spectrum modulation is widely used. Spread spectrum 

refers to any modulation scheme that produces a transmitted bandwidth much larger 

than the information bandwidth [Ref. 50]. We will briefly address the different digital 

modulation schemes and focus on frequency hopping. 

A.     DIGITAL MODULATION SCHEMES 

For comparison, digital communication schemes are briefly presented. Digital 

modulation techniques use the binary and the M-ary schemes. Binary schemes consist 

of the on-off keying (OOK), also called ASK, binary phase shift keying (BPSK), and 

frequency shift keying (FSK). M-ary schemes are generalizations of the binary schemes 

for transmitting M symbols, e.g., M-ary PSK or M-ary FSK. 

1.      Binary schemes 

The major reference of this topic is [Ref. 51]. 

• OOK: The OOK signal is represented by: 

s(t) = Ac m(t) cos wct, (rV-1) 

where Ac is the carrier signal amplitude, m(t) is the transmitted binary data 
over the bit duration T&. For unipolar representation it has either "1" or "0". 
Therefore, over an observation time T& the signal is zero (i.e., m(t) = 0) or it 
is a single sinusoid at frequency UJC (i.e., m(t) = 1). 

• BPSK: The BPSK signal is represented by: 

s(t) = Ac cos [wct + A6m(t)], (IV.2) 

where m(t) is the bi-polar message signal. Over the bit interval Th the signal 
has the value ±1 depending on whether the bit information is 1 or 0. A0 is 
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the corresponding phase shift. Usually, A6 is chosen as %/2. Therefore, the 
BPSK signal has either one of the two forms: 

s(t) = ±AC sin wct ;    for   m(t) = ±1. (IV.3) 

Therefore, under any value of m(t) the BPSK signal will be a sinusoid with a 
fixed frequency component but with a phase of zero or TV. 

• FSK: The continuous phase FSK signal is given by: 

s{t) = Ac cos [wct + 6(t)], (TVA) 

and 

6(t) = Df f    m(£)d£, (IV.5) 
J— 00 

where Df is a modulation index. For binary messages m(t) the resultant 
FSK signal is called the binary FSK scheme. The FSK signal has one of two 
frequencies without phase discontinuities at the transition points. 

2.      M-ary Schemes 

For an M-ary schemes a message m(t) has M symbols. Consequently, the 

transmitted signal will have M different states. 

• M-ary ASK: The M-ary scheme of the OOK (or ASK) may be implemented 
for different values of M. An example is QAM (i.e., M = 4). All of the QAM 
states have the same single frequency components but differ in amplitude. 

• M-ary PSK (MPSK): The M-ary PSK is generated similar to BPSK with the 
exception that the value of A0 is chosen according to the number M. Thus, 
all the MPSK states have the same frequency component but differ in phase. 

• M-ary FSK (MFSK): The M-ary scheme is similar to BFSK. But, instead of 
two symbols (states), it has a set of M symbols. Consequently, M different 
frequencies are transmitted. Thus, the MFSK signal can be expressed as s(t) = 
Ac cos(wit + Bi) where Wj and 9{ are the ith frequency and phase corresponding 
to the ith symbol of the message m(t). 

In summary, digital modulation techniques are characterized by their signaling 

mode which consists of a single fixed frequency component over the duration of a given 

bit. 
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B.     SPREAD SPECTRUM COMMUNICATION SIGNALS 

The major reference for this section is [Ref. 19, 50]. Spread spectrum (SS) 

communication signals are characterized by a wide transmission bandwidth, and a 

low power spectral density. SS signals have two main advantages: 

1) The message has a low probability of being intercepted (LPI) as a result of 
the wide frequency band, and the low power spectral density of the signals. 

2) SS systems can reject jamming signals and allow many users to share the same 
frequency band as a result of the spreading gain [Ref. 19, 50]. 

Among the different possible SS modulation formats, the following are preva- 

lent: 

1) Frequency Hopping (FH): The complex baseband signal, c(t), with basic pulse 
shape p(t),is given by 

c(t) = £ exp [j (2TT fnt + 4>n] p[t - nTh), (IV.6) 

where Th is the pulse duration, better known as the hop interval. The pseudo- 
randomly generated sequence of frequencies {/n} will drive the modulator to 
generate a modulated version of p(t). {</»„} is an associated phase shift at each 
carrier frequency fn. 

2) Direct Sequence (DS) Modulation: The complex baseband signal, c(t), of DS 
is given by 

c(t) = Y,CnP(t-nTc), (IV.7) 
n 

where {cn} is a pseudorandom sequence which modulates a sequence of pulses 
over a duration Tc, known as the chip interval. 

3) Time Hopping (TH): The pulse waveform is given a fraction of duration Ts, 
i.e., Ts/M. A typical time hopping waveform might be 

c(*) = £K*-(n+£)r')' (IV-8) 

which means the pulse will be controlled by the pseudo-random number (an) 
to appear at any of the M time segments within the duration Ts. 

4) Hybrid Modulations: A blend of the above techniques may satisfy better per- 
formance according to some requirements. 
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Figure 5 shows a typical SS system. The SS spectrum uses two types of mod- 

ulation. The first type, the baseband data modulation, is also called the primary 

modulation. The second type, the actual SS modulation, is also called the secondary 

modulation. For simple SS system realizations, certain combinations of primary and 

secondary modulations are usually employed. For DS, the binary phase shift keying 

(BPSK) is used as the primary data modulation scheme. For FH, the M-ary frequency 

shift keying (MFSK) is used. The FH system which implements MFSK data modula- 

tion is known as the pure FH scheme, and is the most popular and widely applied FH 

scheme. Another advantage for the pure FH scheme is its resistance against Repeat- 

back jammers (RBJ) which estimate the FH signal frequency and consequently send 

a proper jamming waveform. Thus, pure FH schemes minimize the hostile activity of 

RBJ as each hop frequency carries one symbol of the transmitted message only. 

C.     THE FREQUENCY HOPPED SIGNAL 

The FH of the BFSK signal is given by 

x{t) = V2Psin [{u)0 + un + dn A u)t], (TV.9) 

where P is the signal power. The frequencies Wo and Aco are constants, and con is the 

frequency for the nth symbol dn whose value is ±1. 

During any hop, only one frequency component will be at the transmitter 

output when the hopping interval equals the symbol interval. The range of variation 

of u)c = (ujn + U)Q ± Aw) is known as the hopping bandwidth. Two types of FH 

systems exist depending on the hop interval Th and the symbol interval Ts: fast- 

frequency hopping (FFH) and slow frequency hopping (SFH) which differ in their 

hopping speed. The number of hops within one symbol duration is the measure of 

the speed of the hopping rate. For pure FH signals with BFSK, the SFH requires 

Th > Ts while FFH requires Th <TS. The SFH contains one or more symbols during 

the hop interval while the FFH has one or more hops over one symbol interval. Figure 
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6 shows a typical pure FH system using the BFSK as a primary modulation. Figure 

7 illustrates a typical time-frequency behavior of the BFSK pure FH scheme. 

D.     THE INSTANTANEOUS CORRELATION FUNCTION 
OF FREQUENCY HOPPED SIGNALS 
Spread spectrum studies have usually considered the FH signal as a stationary 

process [Ref. 19, 50] even though the spectrum of the FH signal varies with each 

hop interval. Therefore, the correlation representation, using time averaging, is not 

suitable for this nonstationary process. 

One way to identify the FH signal is to monitor the time evolution of the signal. 

Hence, we need to keep the time dependency in the correlation representation. In 

this work we resort to the time-varying correlation definition for characterizing the 

FH signals. Therefore, we select the instantaneous correlation function (ICF) as the 

candidate correlation representation. In this section, we will address the structure of 

the ICF of the pure FH signals. 

The pure FH signal may be represented as successive intervals (i.e., hops) 

with single complex exponentials. The frequency within each interval (i.e., the hop 

frequency) is controlled by a randomly generated sequence of numbers, therefore, we 

can assume the following about the used frequencies: 

(1) The number of the different hopping frequencies is much larger than the num- 
ber of observed hops. 

(2) The selection of discrete hopping frequencies (hopping pattern) is determined 
by a pseudo-random number generator (PNG), i.e., all hopping frequencies are 
equi-probable. 

(3) The observation interval is much smaller than the period of PNG. The period 
of PNG is the number of generated hops times the hop interval. 

As a result, we can deduce that any two successive hops will have two dif- 

ferent frequencies.   The difference in the frequency of adjacent hops will generate 
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the structure of the instantaneous correlation functions. Recall that we define the 

instantaneous correlation function as: 

R(t,T) = s(t + ^)s*(t-^, (IV.10) 

where t is time and r is time lag. Over the two-dimensional plane of time and time 

lag (i.e., t — r plane) we compute the ICF for the time lag \r\ < Th, which will allow 

correlating adjacent hops only. If the values of (t +1) and (t - f) are both confined 

within the Lth hop then the ICF will be given by: 

=   ^LT, (IV. 11) 

which is a function of r and UL only. Note that the values of (t +1) and (t — |) are 

both confined within the same Lth hop if they satisfy, 

(L - l)Th <(t + ^) and (t - |) < LTh. (IV.12) 

This inequality forms the boundaries of the diamond cellular shape for different 

values of L. This cellular structure is shown in Figure 8. Inside each diamond DL, 

the ICF results from correlating signals belonging to the same hop, while outside the 

diamond the ICF results from correlating signals belonging to two consecutive hops. 

A detailed derivation of the ICF is given in Appendix A, which leads to the 

doubly indexed correlation function Rm>n(t:r) given by: 

#m:n(i,r) = exp j l(um - un)t + (ujm + un)- j . (IV.13) 

where m and n are the indices of the two adjacent hops. Note that: 

1) Within the main diamond of the nth hop, i.e., m = n, the ICF is given by 

Rn^t, r) = exp{JKr)}. (IV.14) 
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2) Outside the main diamond in the upper triangle between hop numbers (n) and 
(n + 1), the ICF is given by 

Än+i.nfr r) = exp |i(o;n+i - w„)t + (w„+i + w»)-| • (IV. 15) 

In conclusion, the instantaneous correlation function of a pure FH signal has 

a cellular or diamond structure. Inside the Lth diamond it has a single complex expo- 

nential component along the delay axis representing the Lth hop frequency. Outside 

the diamond, R(t,r) is a product of two terms, e
j{-Wn~Wm)t and e

j^n+Wm)TI2, where un 

and um are two consecutive hop frequencies. 
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Figure 9. Areas and indices of the doubly indexed function Rm^rj. 
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V.        ANALYSIS USING MORLET WAVELETS 

We studied the structure of the ICF surface obtained for complex FH signal 

in chapter IV, and showed that it consists of complex sinusoidal components. In this 

chapter, we will analyze the Morlet wavelet transform of the ICF. We will use the 

Morlet basis function for two reasons. First, the Morlet wavelet is a complex sinusoid, 

modulated by a Gaussian window, and is inherently best suited for filtering sinusoidal 

signals. Second, the Morlet wavelet has a mathematical formulation which makes the 

analysis and derivations tractable. 

Recall that the mother Morlet wavelet g(t) is given by: 

g{t) = ejkte-i2/2cT\    for- oo < t < +00, (V.l) 

where k is a constant that represents the modulation frequency, and a2 is inversely 

proportional to the roll-off factor of the Gaussian window. The Fourier transform is 

given by: 

G(w) = e-»<w-*>\ (V.2) 

The Morlet wavelet does not satisfy the admissibility nor the orthogonality 

condition as it exists over an infinite time interval, but for practical applications it is 

truncated when it is sufficiently attenuated. If the wavelet has finite support (non-zero 

only over finite interval), then the scaled and shifted wavelet, gs,e(t), will be non-zero 

over the interval [£ — no~s,£ + nas], where s is the scale and I is the shift. Here, n 

is a preselected number which ensures sufficient decay. The functional dependence of 

9s,e{t) is as described in Equation 11.41. Usually, n is chosen > 4 [Ref. 46]. 

A.     TRANSFORM OF A TIME-LIMITED COMPLEX 
EXPONENTIAL 

We showed in Chapter IV that the ICF of the FH signal consists of complex 

exponential components with frequencies that differ from region to region. Therefore, 
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we need to address the response of the wavelet transform to complex exponential 

signals. Let the signal f(t) be a complex exponential Ae?WLt defined over the interval 

t G [LT, (L + 1)T], where T is the hop interval, and L stands for the Lth hop. When 

(7 = 1, the Morlet wavelet transform (MWT) is given by: 

1      r£+ns 
W{s, £) = A-±= I       ei"Lte-m-Dls)e-{{t-z?Mdt (V3) 

where £ is confined to the interval [LT + ns, (L + 1)T - ns\. This interval guarantees 

that the wavelet will be confined over the same hop without crossing the border to 

another hop. Later on we will compute the wavelet transform when the signal runs 

over the border between two adjacent hops. The exponent in Equation V.3 can be 

written as: 
It2     f. .k     £\       .kl     IP 

Substituting uL — k/s = u> we obtain 

W(s,£) = ,4-l=e-('2/2s2)+i(M/s) rnSexV Vs Je-ns 

This equation can be reduced to 

2s2 r + \ju + dt 

(V.4) 

(V.5) 

W^^A^exp 
2, ,2 

S CO 

2      - -T + JMLk + JU)L£ (EF), (V.6) 

where EF is given by: 

1 
EF = erf 

V2 
{n + j(uLs-k)) + erf 

1 
-j={n-j(uLs-k)) (V.7) 

for £€[LT + sn, {L + 1)T - sn]. 

We note that the magnitude of W(s, £) is independent of the wavelet shift 

variable £. 

The term EF defined above can be approximated using the following formula for the 

complex error function [Ref. 54] with 
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e x 

er fix'+ jy)   =   erf(x) + -— [1 - cos 2xy + j sin 2xy] 
Z/KX 

2   _ 2   °°    e-(l/4)m2 

+-6   X    Em2 + Ax2lfrn(x,y)+J9rn(x,y)} 

+e{x,y), (V.8) 

where 

fm(x, y)   =   2x — 2x cosh(my) cos(2a;y) + rh smh(my) sin(2a;y) 

9m(x,y)   =   2xcosh(my)sin(2xy)+msmh(my)cos(2xy) , 

and \e(x,y)\ « 10-16|er/(rc,t/)j. 

Since EF is of the form 

EF(x, y) = erf(x + jy) + erf(x - jy), 

we need to determine erf(x — jy). Recall that sin(a;) and sinh(x) are odd functions 

while cos (a;) and cosh (a:) are even functions. Thus we can express 

e~x2 

erf(x - jy)   =   erf(x) + -— [(1 - cos 2xy) - j sin 2xy] 
2TTX 

2 _ 2 »   e~(1/4)m2 

+~e~X    E m2 + 4x2 (/">(*, -V) + J9m(x, ~V)) , 

where 

fm{x, —y) =   2x — 2x cosh(my) cos(2£2/) + m sinh(my) sin(2a:y), 

9m(x, —y) =   —2xcosh(my) sin(2a:y) — msinh(my) cos(2:q/). 

Or, equivalently, 

fm{x,-y)   =  fm(x,y), 

9m(x,-y)   =   -gm{x,y). 
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Using 

and 

erf(x - jy) = erf*(x + jy), 

erf(x + jy) + erf(x - jy) = 2Re {erf(x + jy)}, 

where Re{-} denotes the real part, we can express W(s, i) as: 

(V.10) 

(V-ll) 

W(s,£)   =   AVzJrsexp 
S2ÜÜ2

T        k
2 

Y~ - ~ö + SUJlk+JWL^ 

■Re I erf I -j=[n + j{uLs - k)] j L (V.12) 

for / e [LT + ns, (L + 1)T - ns]. 

Equation V.12 shows that.the transform has a linear phase response, $(o;), 

independent of the scale s, which is given by: 

$(a>) = uLL (V.13) 

Note that if the complex exponential signal has an initial phase shift, 6L, the phase 

of the output of the transform will change to 

${u) = (uLe + oL). (V.14) 

The amplitude may be expressed as AB(s,u), where S(S,CJ) is the wavelet 

gain given by: 

B(s, u)) = v 2-KS exp 
s2w?     k2 

— + suLk Re < erf ( —An + j{uLs - k)] J \ 

(V.15) 

The gain of the Morlet wavelet transform B(s, u) is plotted in Figure 10 as a function 

of scale and frequency. 

The spectral response of the wavelet is plotted for values of s = 0.5,1, and 

2. Over this dyadic grid the spectral response contains some regions of low response 

due to the narrow bandwidth of the Morlet wavelet filters. In many applications, 

discrete-scale wavelets are preferred. Note that, the scale grid needs to be sampled 
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linearly (i.e., s = 1,2,3,4, ...) or the roll-off factor (a2) of Equation V.l has to be 

decreased when applying Morlet wavelets for full spectral coverage. 

Complex error function.   The error function used in W(s,£) has a complex ar- 

gument and we use a computational method given in [Ref. 54, 56] to compute it. 

The error function is defined as 

2    r* 
en ~f(z) = -L[Ze-"2du, (V.16) 

while the complementary error function is defined as: 

erfc(z) = 1 - erf(z). (V.17) 

Let w(z) be defined as: 

w(z) = e-z2erfc(-jz). (V.18) 

Then, for a complex argument z, the error function is expressed as: 

erf(z) = 1 - e~z2w(jz). (V.19) 

The function w(z) is tabulated for some values of z in [Ref. 54] and may be 

computed using the algorithm described in [Ref. 56]. 

B.     ANALYSIS OF THE TRANSITION REGION 

The transition region is defined as that where the FH signal f(t) changes from 

one to another hop at time tr. Thus, the wavelet transform involves two different 

signal frequency components in the transition region. The transition region between 

interval L and interval L + l will be defined as t € [(L + 1)T — ns, (L + 1)T + ns], 

where the Morlet wavelet support interval is 2ns. 

Hence, the Morlet wavelet transform is given by: 

A    rtr fi — P\ A    r*+ns ft — P\ 
W(s, t) = 4= /     eJa,iV   —- )dt + 4= /       e^V   —^   dt,      (V.20) 

VS Ji~ns \     S     J VS Jtr V     S     J 

where tr — ns < I < tr + ns. 
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The two parts of Equation V.20 can be solved similarly to Equation V.3, which 

leads to 

W(s,£)   =   Vyexp 
s2w|   k2      .   . ; 

■—^ - — + suLk + juL£ 

ierf V5 
fits 

+VYexp 

tr -i 
— j(WLS-k) 

r,2,   ,2 

+ erf (-y=[n + j(wLs - k)] 

 ^±i - — + SUL+1k + JU)L+1l 

\erfl-^[n-j(uL+ls-k)]j 

-erf 
^ 
 j{u>L+is - k) (V.21) 

Over the length of the transition region the magnitude of MWT depends on 

L 

Figures 11 and 12 show an example of the magnitude and the phase of the wavelet 

transform over a transition region. Two frequencies are used (4 and 7 rad/sec) and 

the magnitude and the phase of the wavelet transform are plotted for scale s = 1. 

The magnitude of the wavelet coefficients, for the signal with the first frequency (i.e., 

f==4), is larger than the magnitude of the wavelet coefficients of the signal with the 

second frequency (i.e., f=7). The magnitude and the phase of the wavelet transform 

for scale s = 0.5 is plotted in Figure 12. The magnitude of the wavelet coefficients, 

for the signal with the first frequency (i.e., f=4), is smaller than the magnitude of 

the wavelet coefficients of the signal with the second frequency (i.e., f=7). Note also 

that there is a gradual transition between the two magnitudes according to Equation 

V.21. This indicates that the Morlet wavelet transform does not produce spikes at 

the transition points between frequency hops. 
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C.     ANALYSIS OF IDEAL WHITE GAUSSIAN NOISE 

We investigate the response of the Morlet wavelet to ideal white Gaussian 

noise. The WT is given by: 

r°°   1 t — f 
Wn(sJ)=        —n(t)g*(—)dt (V.22) 

J—oc y S S 

For white Gaussian noise n(t) and due to the linearity of the wavelet transform, the 

output Wn(s,€) has a Gaussian distribution. Since n(t) is assumed having zero mean 

and variance u£, then the mean value of Wn(s, i) is 

E{Wn(s,£)}   =   E (jT ^n^e-^-^h-^^y^dt) 

=   0. (V.23) 

Since Wn(s,£) is zero mean, its variance is given by: 

crj   =   E{\W(sJ)\,}=E{W(sJ)W'(s1t)} 

= 7 £ £ **E { W*.K Wl» (^) if (^) } ■ 
(V.24) 

When two samples n(ti) and n(*2) are assumed independent identically distributed 

Gaussian (i.i.d.) random variables, the term E{[n(ti)n*(t2)} is equal to zero except 

when ti = 22. Hence we have 

2 

■* - ^/:K¥) dt 

=   oiVw. (V.25) 

Consequently, the Morlet wavelet transform of white Gaussian noise, with zero 

mean and a\ variance, is Gaussian with zero mean and a variance of cr^y/v at any 

wavelet scale s. Note that we assumed an infinite support for the Morlet wavelet in the 

aboye derivation. If we carry out the same procedure for the finite support wavelet, 
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we will have a different expression for the variance of Wn(s,£) due to integrating the 

term \g (—)    over a finite interval. In such a case, the variance becomes 

a2 =^ I w        s  /-, 
't-t2 

dt, (V.26) 

which results in 

^(M) = <^vW(ns). (V.27) 

We note that for ns » 1, erf(ns) is well approximated by 1. Thus, we conclude that 

the variance of the wavelet transform will be essentially independent of the wavelet 

scale and can be approximated by o\^fü. 

Actual Noise of the Wavelet Surfaces. Application of the wavelet transform 

to the ICF surface will result in a number of wavelet surfaces corresponding to the 

number of wavelet scales used. Since, we exploit the wavelet surfaces for identify- 

ing the FH signal, we need to investigate the noise distribution over these surfaces. 

The noise of the wavelet surfaces is approximated as Gaussian noise. The following 

considerations assist in making this decision: 

1) The noise background is assumed to be additive white Gaussian noise. The FH 
sinusoidal components and the noise are assumed to be independent. Noise 
realizations at two different time instants are assumed to be uncorrelated and 
independent. 

2) The ICF surface consists of noise components which result from the product of 
two independent Gaussian random variables. This resulting noise surface has a 
/^-distribution shape shown in Figure 13, where r is the correlation coefficient 
of the two Gaussian random variables [Ref. 57]. 

3) The wavelet transform of the ICF surface is a weighted sum of the ICF samples. 

According to the central limit theory, usually, the sum of number of identically 

distributed random variables tends to a Normal (Gaussian) distribution. Since we 

take the wavelet transform of the ICF surface in the time delay direction, the samples 

of the wavelet surfaces, in the time delay direction, may be approximated as having 

a Gaussian distribution.   Simulation results show that the noise distribution over 
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the wavelet surfaces, taken in direction of time delay, has approximately a Gaussian 

distribution. The Gaussian assumption was tested using a chi-square test. The main 

central part of the noise distribution (excluding the tails) was found to be Gaussian 

with confidence level > 90%. 
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Figure 10. Morlet wavelet gain. 
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s= 1 , w1=4, w2=7 
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Figure 11. Morlet wavelet gain and phase over the transition region (s=l). 
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Figure 12. Morlet wavelet gain and phase over the transition region (s=0.5). 
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Figure 13. The It-distribution. 
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VI.       ANALYSIS OF THE PROCESSING 
SCHEME 

A.     INTRODUCTION 

Our goal is to exploit the wavelet transform of the ICF surface in order to 

identify FH modulation schemes. The wavelet transform results in a set of wavelet 

surfaces, one for each scale. We address the interception problem using two ap- 

proaches, either of them can be used independently, but they differ in performance as 

will be shown later. In the first approach, we visually inspect the 2-D wavelet surfaces 

to identify and classify the structure of the FH signal and obtain an estimate for the 

hop time interval. In the second approach, we apply a proposed processing scheme to 

estimate the hop start/stop times, the hop-scale pattern, and the hop frequency. The 

extraction of the hop start/stop times is addressed using an edge detection approach 

by applying a compass operator which is well known in the image processing area. 

The hop-scale pattern is obtained by applying an energy analysis. The energy anal- 

ysis assigns a scale index (called the proper scale) to each hop. The proper scale, for 

each hop, is that scale which has the greatest energy content. The sequence of proper 

scales, representing the hop sequence, is called the hop-scale pattern. The frequency 

of each hop can be extracted from the wavelet surface at the proper scale. 

The identification of the FH signal may be accomplished based on: 

(1) The hop-scale pattern: If two or more wavelet scales are applied, the hop-scale 
pattern of the FH signal will be different from the hop-scale patterns of other 
digital modulation signals. 

(2) The frequency diversity: If all frequencies reside in one scale, then, an FH sig- 
nal will have different frequency components as a function of the hop intervals. 

Recall that, the ICF of the FH signal has a cellular structure which comprises 

of a tiling of diamonds. Each hop results in a diamond with a width equal to the hop 

interval. Thus, the diamond boundaries point to the hop start/stop times. All wavelet 
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surfaces at all scales emphasize the signals and hence the diamonds which belong to 

that scale. Other signals are attenuated. In this chapter, we address aspects of the 

discrete implementation, the proposed processing scheme, the measured parameters, 

and performance measures. In section VLB, we address the discrete form of the 

ICF and its output expression to a white noise input. In section VI.C, we address 

the visual inspection and FH identification from the wavelet surfaces and obtain an 

estimate for hop time intervals. Then we compare the FH wavelet surfaces with 

wavelet surfaces from other digital modulation schemes. In section VI.D, we consider 

an energy analysis for identifying the scale of each frequency hop. We also investigate 

the performance of scale identification and evaluation measures. In section VI.E, 

we address the equalization of the spectral shape of the ICF and its impacts on the 

performance of scale identification. In section VI.F, we address the hop frequency 

extraction from the wavelet surfaces at the proper scale and from the original time 

signal. We also investigate the performance of frequency extraction and evaluation 

measures. Finally, we address the extraction of the hop start/stop times in section 

VI.G. 

B.     PROCESSING SCHEME 

The interception problem usually assumes some prior knowledge about the sig- 

nal of interest. In our case, we assume the signal hopping bandwidth is approximately 

known and the data is properly heterodyned and sampled. 

1.      Processing Sequence 

The input data parameters to our processing scheme are the parameters of the 

FH signal (i.e., sampling frequency and the range of possible frequencies) while the 

outputs are: 

(a) The wavelet transform of the ICF surface, i.e., the wavelet surfaces. 

(b) The scale of each hop. 

(c) The frequency of each hop. 
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(d) The hop interval start/stop times. 

The data (input) process generates FH signals according to some predeter- 

mined input parameters (i.e., number of hops, hop interval, hop frequencies, sampling 

frequency and SNR). The analysis process generates the ICF surface and computes 

its wavelet transform at the predetermined wavelet scales. The measurement process 

extracts the outputs (the scale of each hop, the frequency of each hop, and the hop 

interval start/stop times). 

Figure 14 shows the functional description of the processing scheme where the 

Input stands for the input process. The Hilbert Transform generates the analytic form 

of the signal. The Instantaneous Correlation Function generates the (discrete time) 

ICF surface. The Wavelet Transform computes the (discrete time) wavelet transform 

of the ICF surface (i.e., wavelet surfaces). The Scale Identifier identifies the hop scale. 

The Hop Frequency extracts the hop frequency from the wavelet surfaces. The Hop 

Timing extracts the hop start/stop times and the hop interval. 

2.      Discrete-Time Implementation of the Instantaneous 
Correlation Function 

For discrete implementations, let R(n, u) define the ICF of the discrete-time 

signal x(n), 

R(n,u) = x(n + ^jx*(n-^j, (VI.l) 

where n is time and u is the time delay. Note that, the normalized sampling interval 

is 1 for the discrete implementation. In addition, the combined index n ± | should 

assume only integer values. Therefore, there will be two choices: 

• Zero-inserted ICF: If we let u assume only even integer values, then R(n,u), 
for odd u, must be set to zero. 

• Frequency-doubled ICF: If we let u = 2m then R(n, m) will be defined as 

R(n, m) =x(n + m)x* (n — m). (VI.2) 
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Zero-inserted ICF. The effect of zero insertion to the ICF will result in doubling 

the number of wavelet coefficient over the resultant surfaces, implying more computa- 

tion and storage load. Each hop will reside within its scale according to its associated 

signal frequency. 

Frequency-doubled ICF. The frequency-doubled discrete ICF has the following 

characteristics in contrast to the zero-inserted ICF: 

• Due to doubling the frequency, the minimum sampling frequency of the mon- 
itored signal will be twice the Nyquist rate. 

• We obtain half the number of coefficients at the ICF surface and consequently 
at the wavelet surfaces. 

• Over the wavelet surfaces, each hop will be located at a lower scale index than 
its associated signal frequency (lower scale index indicates higher frequency 
according to the MATLAB designation, see VI.A.3). 

Since we usually pick a sampling frequency which is a multiple of the Nyquist 

rate, the choice of the frequency doubled ICF is advantageous because of a fewer 

number of coefficients, hence, saving in computation and storage. On the other hand, 

the loss of processing gain, due to pushing each hop to a lower scale index, can be 

overcome by chosing higher sampling frequency. For these reasons we adopted the 

definition of the frequency-doubled ICF in the processing scheme. 

3.      MATLAB Discrete Wavelet Transform 

The MATLAB Wavelet Toolbox is used to implement the discrete wavelet 

analysis of the ICF surface. The wavelet transformation is carried out using the 

one-dimensional wavelet transform in the direction of the time delay u for each time 

element of the correlation function (as previously addressed in Chapter III). MATLAB 

uses a scale index designation and a corresponding multi-level decomposition tree 

as shown in Figure 15. Sj denotes the output of the wavelet transform at the jth 

wavelet scale (i.e., the wavelet coefficients or the details at the jth level). Aj denotes 

the approximation at the jth level. H0 is the scaling filter (low pass filter) and Fi is 
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the wavelet filter (high pass filter) [Ref. 59]. MATLAB uses the Daub-N designation 

where N indicates the wavelet order and the number of vanishing moments, while the 

actual filter length is 2N [Ref. 59]. 

C.     VISUAL IDENTIFICATION 

In this section, we address the visual inspection of the wavelet surfaces in 

order to identify the FH modulation scheme. We investigate different approaches to 

represent these surfaces and considered real and complex valued wavelet functions. 

1.      Real and Complex-Valued Wavelets 
According to Daubechies [Ref. 42], there is no symmetric or anti-symmetric 

real compactly-supported orthonormal wavelet. Symmetry property can be achieved 

only for complex-valued wavelets. Symmetry of a wavelet implies that the FIR filter 

representation has a linear phase response [Ref. 36]. It is an important feature in some 

wavelet applications, such as numerical resolution of partial differential equations 

with boundary conditions [Ref. 60]. A complex-valued Daubechies wavelet of order 

3 is given in [Ref. 60] and has been used for comparison with the MATLAB real 

Daubechies wavelet of the same order. The Daub-3 complex wavelet has the following 

scaling coefficients: 

Äo(l) = Ao(6)   = 

Äo(2) = Äo(5)   = 

3+M5 
64 

5-M5 
64 

h0(3) = hQ(4)   =   H±L>£I. (vi.3) 

2.      Surface Representation 
Structure of the FH signal can be identified and classified by visually inspecting 

the wavelet surfaces. We can also obtain an estimate for the hop start/stop times. The 

next automated step is achieved by applying a proposed processing scheme to estimate 

the hop start/stop times, the hop-scale pattern, and the hop frequency.  Using the 
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analytic form of the FH signal, the ICF surface will be a complex-valued function. 

Therefore, for any real or complex wavelet function the resultant two-dimensional 

wavelet surfaces are complex-valued. Hence, we consider the real part, the imaginary 

part, the magnitude, or the phase (angle) of the complex-valued surface. 

An opinion test was carried out to assess the quality of identification from the 

wavelet surfaces using different representations. The Morlet wavelet and Daubechies 

wavelet of order 3 were both used in their real and complex form. Four different 

representations were investigated: real part, imaginary part, magnitude (absolute 

value), and phase. The objective of the opinion test is to identify the cellular structure 

over the wavelet surface and to identify the diamond boundaries as an indication of 

the hop start/stop times. 

Figures 16 to 19 present the real part of the WT obtained with the real-valued 

Daubechies wavelet of order 3, at an input SNR values of 10 and 3 dB. In Figures 

16 and 17 we note that we can not identify the FH structure over the surface of the 

ICF denoted by "CF". For wavelet surfaces, labeled "Sir", "S2r",..., "S5r", we can 

identify diamond patterns at the hops number 1, 2,..., 5 , respecively. Same findings 

can be observed in Figures 18 and 19 about wavelet surfaces. These results show that 

we can identify the FH structure from the wavelet surfaces, while it is not possible to 

do so from the ICF surface. 

D.     ENERGY ANALYSIS AND SCALE 
IDENTIFICATION 

Energy analysis is performed over the wavelet surfaces at all scales considered. 

For the energy analysis we assume correct hop timing.  The hop interval and hop 

start/stop times are estimated by visual inspection (and later on from the processing 

scheme). Thus, we can point to each hop over the wavelet surface and compute the 

energy contained.  The energy contained at all scales are compared to identify the 

proper scale of each hop. 
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1.      Energy and Energy per Sample 
Parseval's theorem for the complete orthogonal filter bank (over L partitions) 

is applied to the discrete time wavelet analysis [Ref. 45]. It is given by: 

lk(n)lla=E(l^»2*)la + i:i^2fc + l)|2], (VI-4) 
kez \ j=i / 

where, in the sense of wavelet analysis, C(L, 2k) are the scaling coefficients at the 

scale L, d(j, 2k + 1) are the wavelet coefficients at scale j, and k is the wavelet shift 

variable. 

Therefore, the quantity 

oo 

k=—oo 

represents the portion of the signal's energy over the jth scale. For narrowband signals 

which reside within one scale, the signal energy will belong to that scale. However, 

some portions of the signal energy will be leaking to other scales. To identify the 

proper scale one can consider the maximum value due to the following quantities: 

1) Wavelet coefficient. 

2) Total energy. 

3) Energy per sample. 

Energy per sample is defined as: 

m = f§, (vw) 
where j is the scale index, E(j) is the total energy at the jth scale, and N(j) is the 

number of wavelet coefficients at this scale (i.e., the number of surface coefficients). 

According to the scale designation of the MATLAB Wavelet Toolbox, 

N(j) = \N(j + l). (VI.7) 
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If the signal x(t) resides within the scale j or resides within the scale (j + 1), 

with the same total energy, we have 

A(j + l) = 2A(j). (VI.8) 

Thus, there will be a 3 dB gain in the energy per sample per each increment in the 

scale index. 

Table 1 summarizes the energy distribution obtained with wavelet analysis 

using Daubechies wavelet of order 2 (Daub-2) and order 10 (Daub-10). There are 

three input vectors with 64 samples each, the first vector has a frequency of 3/8Fs, 

the second has S/16FS, and the third has 3/32Fs, where Fs is the sampling frequency. 

This means that the first input vector resides within the first scale, the second vector 

resides within the second scale, and the third vector resides within the third scale. 

We conclude the following: 

• The total energy of the input signals is distributed among the scales. The sum 
of the total energies over the scales is slightly less than the input signal total 
energy since we disregard contribution from the low pass section. 

• The proper scale (where the signal resides) has the greatest share of the total 
energy. This share is greater (percentage wise) if a longer wavelet (e.g., Daub- 
10) is used than for a shorter wavelet (e.g., Daub-2). 

• Energy per sample at the proper scale is larger if the signal resides at a higher 
scale. The gain factor in energy per sample (if the signal resides within scale 2 
rather than scale 1) is approximately 1.41 and 1.64 for Daub-2 and Daub-10, 
respectively. We note that ideally, the gain factor in energy per sample should 
be 2 per scale index. 
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Table 1:   Energy Distribution of Daub-2 and Daub-10 Wavelets 

Measure Wavelet Scale / = (3/8)*; 
Signal with 

/ = (3/16)F, / = (3/32)Fs 

Max 
Coefficient 

Daub-2 
1 
2 
3 

1.3365 
0.5753 
0.3743 

0.6574 
1.6998 
0.3594 

0.4349 
1.0356 
1.8480 

Daub-10 
1 
2 
3 

1.2524 
0.3968 
0.1854 

0.3818 
2.0331 
0.3859 

0.3284 
0.5504 
2.8296 

Total 
Energy 

Daub-2 
1 
2 
3 

29.7687 
1.1313 
1.0495 

7.2565 
23.3282 

0.9492 

0.8486 
8.2775 

21.2601 

Daub-10 
1 
2 
3 

31.4508 
0.3980 
0.0875 

1.6228 
29.9017 

0.3900 

0.4040 
1.9671 

29.0447 

Sample 
Energy 
(average 

per sample) 

Daub-2 
1 
2 
3 

0.9201 
0.0628 
0.1049 

0.2199 
1.2960 
0.0949 

0.0257 
0.4599 
2.1260 

Daub-10 
1 
2 
3 

0.7671 
0.0133 
0.0036 

0.0396 
0.9967 
0.0163 

0.0099 
0.0656 
1.2102 
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2.      Scale Identification in an Ideal Noise Environment 

In this particular simulation, the correlation surface is approximated by si- 

nusoidal signals embedded in ideal white Gaussian noise. The maximum coefficient, 

total energy, and energy per sample are tested. The signal-to-noise ratio is expressed 

as: 

SNR = 
input signal power 

input noise variance 

Three different input vectors at 3Fs/8, 3FS/16, and 3Fs/32, each with 2048 samples, 

are analyzed using Daub-2 and Daub-10 wavelets. SNR values are 10, 5, 2.5, 0, —2.5, 

-5, —10, and —15 dB. Each SNR level was used in 20 trials. Results are shown in 

Table 2 where the tabulated SNR is the smallest SNR at which each measure correctly 

designates the proper scale 100% of the time. 

Table 2:   Noisy Observation 

Measure 
Wavelet 

Type 

Greatest 
Coefficient 

Total 
Energy 

Sample 
Energy 

Smallest SNR [dB] 

Daub-2 2.5 0 -10 

Daub-10 0 -2.5 -10 

These results show that the energy per sample achieves the lowest SNR value com- 

pared to the other two measures. Consequently, this measure is considered the most 

reliable one for proper scale identification. 

3.      Hop-Scale Pattern 

We recall that scale identification means assigning a scale index to each hop 

of the observed signal. The hop is assigned the scale whose energy per sample is the 

greatest among the values of the other scales; hence, it is called the proper scale. 

Therefore, a sequence of hops will have a sequence of proper scales, also called the 

hop-scale pattern. 

74 



Properly selecting a heterodyne and a sampling frequency will result in proper 

choice of the wavelet scales. The number of scales is defined by the number of octaves 

in the heterodyned signal. The designation of the scales (scale indices) is controlled 

by the selected sampling frequency, as each scale index is defined in terms of fractions 

of the sampling frequency as shown in Figure 15. As an example, assume we have 

an FH signal with hopping bandwidth of 30-90 MHz. If the signal is heterodyned to 

10-70 MHz and sampled at 280 MHz, then the proper wavelet scales are S2, S3, and 

S4. If the FH signal is heterodyned to 2-62 MHz and sampled at 280 MHz, then the 

proper wavelet scales are S2, S3, S4, S5, and S6. 

To distinguish the FH signal from other modulation types, the number of 

scales used must be at least two. The hop-scale pattern will then be comprised of 

two symbols (i.e., two scale numbers). For other modulations the hop-scale pattern 

will be comprised of one symbol (i.e., one scale number). For the MFSK scheme with 

a carrier frequency in the above mentioned band, the bandwidth of the modulated 

signal is typically 25 KHz (i.e., the channel separation for the wireless sets). Thus, 

the MFSK signal bandwidth can not span an octave except when we heterodyne to 

a very low frequency (i.e., less than 25 KHz). Hop-scale patterns are also useful for 

hop frequency extraction from wavelet surfaces, since they point to the proper scale 

where most of the signal energy is concentrated. Therefore, frequency extraction, if 

done on that wavelet surface, will provide correct values. 

4.      Success Rate 

Performance of scale identification is evaluated as the success rate, P^. We 

generate known hop-scale patterns and obtain the percentage of the correctly identi- 

fied hop-scales. Therefore, P^ is defined as: 

_ number of correct hop-scales 
total number of hops 

The probability of error, given by Pe = 1 - Pid, is the error in identifying the correct 

scale. The quality of scale identification depends on the height of the greatest energy 

75 



per sample relative to the other sample energies from other scales. Therefore, a 

suggested measure, dh, of the quality of scale identification is defined as: 

dh = max(W)»-mean({^)}) 
yf™({A(j)}) 

where max(-) is the maximum value, mean (•) is the mean value, and var(-) is the 

variance. The term dh measures the distance between the height of the energy per 

sample at the proper scale to its average values over all scales, and is expressed in 

terms of the standard deviation of the energy per sample. 

E.     EQUALIZATION OF THE SPECTRAL SHAPE OF 
THE INSTANTANEOUS CORRELATION FUNCTION 

Simulations show that the ICF of white noise (data set) has a triangular type 

spectrum in the direction of the time delay. Figure 20 shows theoretical and experi- 

mental frequency spectra taken in direction of the time delay (i.e., transforming the 

time delay to frequency). Thus, the energy per sample for all wavelet scales need to 

be compensated since the spectrum is colored. 

Figure 20 shows that the slope of the ICF spectrum is 1, thus, its height, q{j), 

at the middle of the jth scale is: 

3(7V-1) 
q(j) = l + 2J+1 

where N is the number of ICF data points in the direction of the time delay. Note 

that the ICF of white noise is created by multiplying samples of the white noise in 

the time domain. Therefore, the resultant FT of the ICF is the convolution of two 

FT of the white noise, consequently, we obtain the triangular spectral (FT) shape. 

As a result, we will apply an equalizer, whose values are the reciprocal of q(j), to 

compensate the magnitude distortion at all scales. 

The performance of the scale identification is evaluated and a new success rate 

Pid is computed. Results are presented Chapter VII. 
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F.     FREQUENCY ESTIMATION 

In Chapter III, we related the WVD of the signal x(t) to the wavelet trans- 

form of its ICF. The relation is stated in Equation 111.33 and it is repeated here for 

convenience: 
/oo 

G*(sf)Vx(tjy
2nfedt: 

-00 

where Wl
xx{t\ s,£) is the wavelet transform of the ICF of x(t), Vx(t,f) is the WVD 

of x{t). In Chapter 2, we discussed the properties of WVD and concluded that the 

WVD provides the means to estimate the signal frequencies. The FT of the wavelet 

surface gives a bandpass filtered version of the WVD of the FH signal. Thus, the hop 

frequency can be extracted from a Fourier transform of the wavelet surface, in the 

delay direction, over the main diagonal of the proper diamond. 

1.      Frequency Resolution 

The Fourier transform of the wavelet coefficients can be used for spectral 

estimation at any scale. Consequently, the frequency resolution will be dependent 

on the Fourier transformation. The frequency resolution (i.e., the minimum spacing 

between two resolved narrow band components) of the DFT is approximately equal 

to A/ = Fs/N. Thus, at any given scale k, the number of data points N(k) will be 

related to the number of input data points N by: 

* (*) = NT*- 
The sampling frequency at which the data points are taken is scale dependent, i.e., 

Fs(k) = F$/2
k, where Fs is the input sampling frequency. 

At the kth scale, both the number of data points (wavelet coefficients) and the 

sampling frequency have been reduced by the same factor. Consequently, the FT of 

the N(k) data points has a frequency resolution given by: 

A'«=fi=§-&'- (VL11) 

This means the frequency resolution of the Fourier transform is constant, independent 

of the wavelet scale. 
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2. Success Rate 

Performance of the frequency estimation procedure is evaluated in terms of the 

success rate, Pf. The hop frequency is considered correctly estimated if the spectral 

peak is at the true spectral bin. Pf is defined as: 

_      number of correct hop frequencies ., „ ,n. 
Pf = ; ; T7-—~ • (VI. 12 total number of hops 

The probability of error in estimating the correct hop frequency is denoted by Pe, 

where Pe = l — Pf. The hop frequency is estimated as the bin number corresponding 

to the peak of the FT over a specified region of the wavelet surface. Therefore, the 

quality of the frequency estimation depends on the spectral height of the peak relative 

to the average background. A measure of the quality of the frequency estimation is 

given by: 
d      max (\X(f)D- mean (\X(f)\) 
f y/™(\X{f)\) 

where X(f) is the FT over the wavelet surface, max (•) is the peak value, mean (•) is 

the mean, and var (•) is the variance. The variable df measures the distance between 

the peak value of X(f) to the average background in units of the standard deviation 

ofX(f). 

3. Alternatives for Frequency Estimation 

Given the correct hop start/stop times, the hop frequency may also be esti- 

mated directly from the time signal or from the ICF surface. To extract the frequency 

from the original time signal we use the FFT over the hop length. Recall that the 

FFT is a matched filter for sinusoidal signals in white Gaussian noise. Thus, a bet- 

ter performance is expected in comparison to the nonlinear processing of the signal 

through the ICF computation and the wavelet transformation. The performance of 

frequency estimation from the signal or from its ICF is evaluated using the already 

defined measures Pf and df. We note that Pfs and Pfc denote the success rate using 

the original time signal or using the ICF surface, respectively. Also, dfs and dfc de- 

note the measure of the frequency estimation quality at the original signal or at the 
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ICF surface, respectively. The performance of PfS and PfC are evaluated and results 

will be given in Chapter VII. 

G.     EXTRACTION OF HOP TIMES 

Hop timing extraction is obtained by estimating the hop start and stop points. 

We recall that ICF surface and wavelet surfaces have both a cellular structure consist- 

ing of diamonds, where each diamond is associated with a specific hop. The diamond 

edges define the start/stop point of the hops. The diamond width corresponds to 

the hop interval Th- The sides (edges) of the diamonds of hops are mutually par- 

allel and spaced by the hop interval Th- Therefore, we obtain the distance between 

two sequential intersections of the diamonds and the time axis, to determine the hop 

start (or stop) point. This tends to transform the transition point detection into an 

edge detection problem. There are many approaches to tackle the problem of hop 

timing extraction; in the following section we address one technique based on an edge 

detection operator. 

Compass Operator 

Edge detection is a fundamental problem in image analysis since edges help 

to identify objects. Edges are characterized by an abrupt change in gray level, there- 

fore, edges can be detected using the derivative (gradient) operators which will be 

maximum in the direction of the edges. There are two types of edge operators, the 

gradient operators and the compass gradient operators (also called the compass oper- 

ators) [Ref. 62]. The gradient operator measures the gradient of the two-dimensional 

image in two orthogonal directions. It is usually applied to detect edges with unknown 

directions. The compass operator measures the gradient of the two-dimensional im- 

age in a specific direction. It is used to detect edges with pre-determined directions. 

Since the wavelet surface has edges at angles of \ and ^f radians, a specific com- 

pass operator can be used to detect the edge in these directions. There is a variety 

of compass operators. They differ in form, depending on the direction of the edge 
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to be found. An example of the compass operator is the NE compass ( NE stands 

for North-East). It has a 3 x 3 matrix NE = [0,1,1;-1,0,1;-1,-1,0]. Another 

example is the NW compass (NW stands for North-West) with the 3x3 matrix 

NW = [1,1,0; 1,0, —1,0, —1, -1]. The compass operator is applied to the upper half 

of the wavelet surfaces to potentially detect the diamond edges. An array of the NE 

compass operator is shown in Figure 21. The compass array is used to scan the sur- 

face from left to right. All of the contributions are summed according to the weights 

of the 3x3 matrix. The maximum value is extracted to define the point where the 

compass array matches an edge. To make our data applicable to compass operations 

we need to take care of the negative portions of the surfaces, which is done by adding 

in a positive number equals in magnitude to the smallest (i.e., the most negative) 

surface value. Results are presented in Chapter VII. 
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Figure 14. Functional description of the processing scheme. 
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Figure 15. MATLAB wavelet scale designation and computation tree. 
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Figure 16. Wavelet surfaces of FH signals using Daub-3 at 10 dB (scale 1, 2, and 3). 
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Figure 17. Wavelet surfaces of FH signals using Daub-3 at 10 dB (scale 4 and 5). 
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Figure 18. Wavelet surfaces of FH signals using Daub-3 at 3 dB (scale l,2,and 3). 
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Figure 19. Wavelet surfaces of FH signals using Daub-3 at 3 dB (scale 4 and 5). 
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Figure 20. Theoretical and simulated spectrum of the ICF of white noise. 

87 



Time Delay 

Compass 
Line 

Diamond 
Sides 

► Time 

Figure 21. The compass line over the upper half of the wavelet surface. 
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VII.        SIMULATIONS AND RESULTS 

A. INTRODUCTION 

In this chapter, we will provide experimental results of the processing scheme 

introduced in Chapter VI. Section VII.B shows the results obtained by visual inspec- 

tion of wavelet surfaces as they pertain to the identification of FH signals. Wavelet 

surfaces from other digital modulation schemes are compared with those resulting 

from the FH signals. Section VII.C provides results of hop-scale identification. Sec- 

tion VII.D provides results of hop frequency extraction and compares results obtained 

using frequency estimation from wavelet surfaces and from the original time signal. 

Section VILE provides the results of hop start/stop times estimation obtained by 

using the compass operator over the wavelet surface. 

B. VISUAL INSPECTION 

We carried out an opinion test to identify the FH scheme by examining the 

wavelet surfaces. Ten participants were involved, each one was asked to identify the 

diamond structure of the FH signal over the wavelet surfaces at all pertinent scales and 

for all hops. Two types of wavelet were used; the Morlet wavelet and the Daubechies 

wavelet of order 3. Both wavelets were used in their real and complex form. Four 

SNR values were used; 10, 6, 3 and 0 dB. Four different surface representations 

were used; the real part, imaginary part, magnitude, and phase. To avoid biasing 

and preconception all participants started to identify the surfaces resulting from the 

lowest SNR value and then the higher SNR values consequently. Detailed scoring 

tables and the scoring code are given in Appendix B. Only scoring tables belonging 

to 10 and 3 dB are given in this section because of their significance to the final 

conclusion of the opinion test. 10 dB is the highest tested SNR value while 3 dB 

is the minimum SNR which provided the minimum acceptable identification score of 

2 (according to the scoring code).  In Appendix B, each scoring table is dedicated 
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for a specific wavelet type at a specific SNR value and contains the scores given for 

different representations at different wavelet scales. "Real" stands for representing 

the wavelet surface by the contour plot of its real part, while "Imag." , "Abs." and 

"Angle" stand for representing the surface using the contour plots of imaginary part, 

magnitude and phase, respectively. The fractions in numbers listed in the tables came 

from averaging the ten scores given by the ten participants. 

Table 3 shows the summary of scores obtained from different wavelet types at 

SNR values of 10 and 3 dB when representing the wavelet surfaces by their real part. 

Eventually, the real part and the imaginary part outperformed other representations. 

The ratings in Table 3 ranges from 0.2 to 1, where 1 represents perfect identification 

of the hop diamonds at their proper positions and 0.2 represents just distinction of 

the hop diamonds from the background noise. Test signals were designed to reside 

within the five wavelet scales given in the table. Comparing different scoring tables 

in Appendix B, it becomes apparent that the real part or imaginary part provided 

the best surface representation for the purpose of visual inspection. The magnitude 

or phase provided a very poor representation. We noted that real valued wavelets did 

a slightly better job than the complex valued wavelets (at least for the wavelet types 

used in the simulations). 

Thus, this visual opinion test indicates that: 

(1) The FH signal can be identified over the wavelet surfaces by its cellular struc- 
ture which is dominant at the proper scale. That is, each scale will emphasize 
the hops which belong to the scale and attenuate other hops. The (diamond) 
cellular structure provides an estimate for the hop start/stop times. 

(2) The FH signal can be well identified at 3 dB SNR and above. 

(3) The real part or imaginary part provides the best surface representation for 
the purpose of visual inspection. 

(4) The real form of the wavelet function provides better surface representation 
than the complex form for the wavelets used in simulations. However, other 
types of wavelets may perform differently. 
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(5) The Morlet wavelet has better performance than the Daubechies wavelet es- 
pecially at higher scales. This is because our Morlet wavelet has a narrower 
bandwidth than that obtained with Daubechies wavelet, and the Daubechies 
wavelet results in a decimated transform which reduces the number of coeffi- 
cients at higher scales. 

. (6) Other modulation schemes such as ASK, PSK, and MFSK will have wavelet 
surfaces residing only at one scale. Plots of these wavelet surfaces are given in 
Appendix C. 

91 



Table 3: Summary of identification scores for real part representation. 

Wavelet 
Type 

SNR 
[dB] 

Scales 
SI S2 S3 S4 S5 

Real 10 1.0 1.0 1.0 0.95 0.95 
Morlet 3 1.0 1.0 1.0 0.95 0.9 

Complex 10 1.0 1.0 1.0 0.9 0.75 
Morlet 3 0.7 0.8 0.9 0.5 0.4 

Real 10 1.0 1.0 0.8 0.2 0.2 
Daub-3 3 0.8 0.7 0.5 0.2 0.2 

Complex 10 1.0 1.0 1.0 0.3 0.2 
Daub-3 3 0.6 0.5 0.7 0.4 0.2 

Scores vary between 0.2 and 1, where 

1: perfect identification of hop diamonds. 

0.2: just distinction of hops from background noise. 
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C.     SCALE IDENTIFICATION 

The proposed processing scheme is used to extract hop start/stop times, the 

hop-scale pattern, and the hop frequency. First, we investigate scale identification 

and hop frequency extraction assuming correct hop timing is available. Extraction 

of hop start/stop times will be considered later. For scale identification performance 

we carried out simulations using the following data: 

(1) Signal pattern length: 5 hops. 

(2) Wavelet scales: SI, S2, S3, and S4. 

(3) Wavelet types: Daub-2, 4, and 8. 

(4) SNR: from 10 to -10 dB. 

(5) Number of experiments: 250 per wavelet per SNR value. 

The hop frequencies of FH signals are selected to generate the hops according 

to a known scale pattern taking in consideration the doubling effect of frequencies by 

computing the ICF surface. The test pattern is selected of four scales; SI, S2, S3 and 

S4. The wavelet surfaces are generated from the ICF surfaces at those relevant scales. 

The total energy of each hop at each scales are computed and the energy per samples 

are obtained by dividing the total energy by the number of wavelet coefficients at 

each scale. Over each hop, the scale with the greatest energy per sample is estimated 

as the proper scale. The resultant estimated hop pattern is compared to the known 

hop pattern and the probability of correct identification is computed. We compute 

the energy contained in each hop over the diamond corresponding to that hop. We 

disregard energy contained outside the diamond since it is contributed by different 

hops. To avoid bias from the colored noise of the ICF surfaces an equalization must 

be performed to the resultant energy per samples at all pertinent scales before using 

them in deciding upon the proper hop scale. Although, the equalization process is 

based on the theoretical spectral shape given in Figure 20, the resultant equalized 

energy per samples, for ideal input white Gaussian noise, do not have the same value 
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at all scales. Table 4 presents averages and variances obtained for the equalized 

energy per samples for Daubechies of order 2, 4, and 8. We note that the average 

values for Daub-2 and Daub-8 are monotonically increasing with the scale index. For 

Daub-4 they are monotonically increasing for the scales Sl,S2 S3 and S5 while they 

have a dip at scale S4. These different trends suggest that different wavelets respond 

differently to the theoretical equalization of the spectral shape of the ICF. Therefore 

the correction weights of the energy per sample depend on the wavelet used. In these 

simulations, results are given for the proper scale identification after equalization and 

correction. 

Figures 22 to 24 show the success rate, P^ obtained for Daubechies wavelets 

of order 2, 4, and 8 at scales SI, S2, S3, and S4. For the performance of scale 

identification we consider the minimum SNR at which Pa is 1 äs the figure of merit. 

Over all tested scales the success rate, Pa assumes the value of 1 at different minimum 

input SNR values. This is a function of the order of the wavelet and the scale. Figure 

22 shows that the performance of Pa obtained from Daub-2 has achieved the value 

of 1 at SNR equals —1 dB at most of the scales, hence , —1 dB is considered the 

minimum SNR value for Daub-2. The minimum SNR value for Daub-4 and Daub-8 

is -2 dB at most of the scales as shown in Figures 23 and 24. We note also that 

for Daub-8, Pa assumes the value of 0.9 for most of the scales at an SNR of —3 dB. 

Results show that: 

(1) For long wavelets (Daub-8) the probability of correct scale identification is 1.0 
at SNR equals to -2 dB, while it is 0.9 at SNR equals -3 dB. 

(2) Longer wavelets perform better than shorter ones. 

(3) The performance at higher scales is mostly better than the performance at 
lower scales in terms of minimum SNR at which Pa is 1. The exception of 
that case is the performance at the scale Si which can be justified by the 
imperfect equalization of the ICF spectral shape. 
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Table 4: Mean and standard deviation of energy per sample. 

Mean SI S2 S3 S4 S5 

Daub-2 1.5688 1.7557 1.9479 2.3165 2.6086 

Daub-4 1.6303 1.8432 2.0218 2.5585 2.1149 

Daub-8 1.7173 1.9979 2.2725 2.4776 2.7525 

Standard 
Deviation SI S2 S3 S4 S5 

Daub-2 0.3419 0.3763 0.6503 0.9542 1.3176 

Daub-4 0.3507 0.4103 0.6891 1.1328 1.2776 

Daub-8 0.3665 0.4520 0.7874 1.1063 1.5845 

Theoretically, wavelet surfaces at higher scales have higher SNR values than 

those at lower scales due to the higher processing gain at higher scales. Consequently, 

the decay in the P^ performance, at low input SNR, is slower at higher scales than 

the decay at lower scales. But, we noted that the decay in Pid is not consistent 

at different scales, especially at scale Si, which shows, mostly, the slowest decay 

compared to other scales. This anomaly may come from many interacting effects due 

to the imperfect equalization and the non-ideal wavelet filters at different scales. 

D.     FREQUENCY EXTRACTION 

We carried out simulations to evaluate the performance of frequency estimation 

using the data from Section VII.C. 

95 



The hop frequencies are estimated by taking the FT of the vector of wavelet 

coefficients located at the center of the diamond in the direction of the time delay. 

The bin corresponding to the peak value represents the estimated hop frequency. The 

estimated hop frequency is then compared to the true hop frequency and the proba- 

bility of correct frequency extraction (the success rate) is computed. The estimated 

frequency is considered correct if the estimation error is less, in percentage of the true 

frequency, than jj, where N is the length of the vector of the wavelet coefficients. 

Figures 25 to 27 plot the success rate Pf obtained for different wavelets at 

different scales. Figures 28 to 30 display the corresponding values of the distance df. 

We consider the minimum SNR, at which Pf is 1, as the figure of merit for 

the performance of frequency extraction. Over all tested scales the success rate of 

frequency estimation, P/, assumes the value of 1 at different minimum input SNR 

values. 

Figure 25 shows that the Pf value for Daub-2 is 1 at SNR equals 0 dB at most 

of the scales, hence, 0 dB is considered the minimum SNR value for Daub-2. The 

minimum SNR value for Daub-4 and Daub-8 is also 0 dB at most of the scales, as 

shown in Figures 26 and 27. 

For Daub-2, Daub-4 and Daub-8 the minimum input SNR is 0 dB at scales 

SI, S2, and S3. At a success rate Pf of 0.9, the minimum SNR equals -2 dB over 

most scales. The distance df is about 4 times the standard deviation of the wavelet 

surface data for all tested scales as shown in Figures 28 to 30. Values of the success 

rate Pf and the distance df shows that the hop frequency can be reliably extracted 

from the wavelet surfaces at an SNR equals 0 dB or better using only one FT at the 

center of the hop diamond area in the direction of the time delay. 

Alternatives for frequency estimation 

Hopping frequencies may also be estimated from the original signal or from the ICF. 

Figure 31 plots the performance PfS and PfC obtained from the time signal and from 

the ICF, respectively, at different SNR values, assuming exact estimates of hopping 
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start/stop times are available. Figure 32 plots the distance dfs and dfC obtained 

from the time signal and from the ICF, respectively, at different SNR values. The 

frequency estimation success rate from the time signal, P/s, is 1 at SNR value of 

—5 dB. The frequency estimation success rate from the ICF, Pfc, is 1 at SNR value 

of 0 dB. The distances dfS and dfC, obtained from the original signal and from the 

ICF are 6 and 7, respectively. This shows that, assuming exact estimates of hopping 

start/stop times are available, hop frequencies may be estimated by processing the 

original signal at lower SNR values than can be achieved using the wavelet surfaces. 

The benefit obtained by analyzing the ICF surface by wavelet analysis is significant 

in case of unknown hop start/stop times. Also, less computations are needed, in case 

of estimating the frequency from wavelet surfaces, due to applying one FT per hop, 

using few coefficients. 

E.     EXTRACTION OF HOP TIMES 
This section presents hopping time extraction results obtained using the com- 

pass operator discussed earlier in section VI. G. The wavelet surface is represented 

by its upper half plane resulting in a triangular shape instead of the familiar hop 

diamond shape. The line compass operator is used over the surface from left to right 

and the peak value of the resultant contribution is located over the time axis. The 

location of the peak value points to the estimated hop starting time. The difference 

between the true and the estimated starting time is considered the estimation error 

and is evaluated in terms of points over the time axis. Each SNR value is used in 20 

trials. Figures 33-35 show the results of the estimation error (Er) at different SNR 

values for different Daubechies wavelet lengthes. The mean-square error (MSE) and 

standard deviation (SD) of the estimation error are also given. Results show that 

the hop start/stop times can be extracted within accuracy of ±7 points (out of the 

128-point hop interval) at SNR values of 6 dB or better. 
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Figure 22. Pid for Daub-2. 
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Figure 23. Pid for Daub-4. 
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Figure 24. Pid for Daub-8. 
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Figure 25. P/ for Daub-2. 
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Figure 26. Pf for Daub-4. 
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Figure 27. Pf for Daub-8. 
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Figure 28. The spectral distance df for Daub-2. 
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Figure 29. The spectral distance df for Daub-4. 
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Figure 30. The spectral distance df for Daub-8. 
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Figure 31. PfS using the signal and P/c using the ICF. 

107 



12 ' ' 

10 

8 • 

€   6 • 

4 ■ 

2 

0 
-1 5 -10 -5            0 

SNR [dB] 
5 -5 0 

SNR [dB] 

Figure 32. dfs using the signal and dfc using the IC£. 
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Figure 34. Hop timing estimation error for Daub-4, 
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VIII.        CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE WORK 

A.     CONCLUSIONS 

Wavelet analysis of correlation functions is a new area which can be used 

to intercept communication signals embedded in noise. This work aimed at apply- 

ing wavelet analysis to the instantaneous correlation function to identify frequency 

hopped signals. 

The pure FH is the most popular scheme for frequency hopped signals. The 

instantaneous correlation function (ICF) of the complex-valued pure FH signal was 

shown to have a cellular (diamond) structure, where each hop contributes to one main 

diamond. Inside this diamond, the ICF has a single complex exponential component 

representing the hop frequency in the delay direction. We showed that the diamond 

intersections with the time axis are the hop start/stop times while the width of the 

diamond is the hop interval. 

The wavelet transform of the ICF surface results into a number of surfaces 

each at a specific wavelet scale (called the wavelet surface). The wavelet surface at 

any scale emphasizes the hops which reside in it and attenuates other hops. 

We addressed the interception problem using two possible approaches. In the 

first approach, we visually inspected the wavelet surfaces to identify and classify the 

structure of the FH signal and to obtain a rough estimate for the hop time interval. 

In the second approach, we applied the processing scheme which can also be used to 

automate the interception task. The proposed processing scheme estimates the hop 

start/stop times, the hop-scale pattern, and the hop frequency. The extraction of the 

hop start/stop times was addressed using an edge detection approach, by applying 

a compass operator, which is a well known technique in the image processing area. 

The hop-scale pattern is obtained by applying an energy analysis. 

The frequency of each hop can be extracted from the wavelet surface at the 
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proper scale, or as an alternative, from the original time data using the time param- 

eters. 

Visual inspection of the wavelet surfaces showed that the FH signal can be 

identified from the wavelet surfaces for an input SNR of 3 dB and above. Other 

modulation schemes such as ASK, PSK, and MFSK will have significant wavelet 

surfaces at one scale only since their frequency bandwidth does not span more than 

one wavelet scale. Hop timing extraction showed that the hop start/stop times can 

be extracted within accuracy of ±5% for short wavelets (Daub-2) at SNR of 6 dB or 

better. 

For the hop-scale identification, we adopted the energy per sample as a measure 

for the proper scale, assuming exact estimates of hop start/stop times are available. 

Results showed that the probability of correct scale identification is 1.0 at an input 

SNR of -2 dB for long wavelets (Daub-8), and it is 0.90 at an input SNR of -3 

dB. The performance of longer wavelets is better than that of shorter ones since 

longer wavelets have better spectral energy concentration than shorter ones. For 

hop frequency extraction, the success rate of frequency estimation from the wavelet 

surfaces showed that the probability of correct frequency extraction is 1.0 at an input 

SNR of 0 dB and above. 

Results showed that the minimum SNR required for automating the intercep- 

tion task is 6 dB. However, a better performance of frequency estimation is obtained 

at lower SNR value (-5 dB) by processing the original time signal, using the hop 

time information. 

B.     RECOMMENDATIONS FOR FUTURE WORK 
For future extension of this work we recommend the following: 

(1) Addressing the automatic recognition of the cellular structure of the FH signal 
over the wavelet surfaces. There are two topics in the image processing area 
which may be helpful in this task; the automatic recognition of regions of 
interest, and automatic target recognition [Ref. 63]. 
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(2) Improving the performance of the hop-scale identification at lower SNR levels. 
In addition, it is suggested to readdress the equalization of the spectrum of 
the ICF surfaces. 

(3) Investigating other wavelet types, and the use of other definitions for the in- 
stantaneous correlation function. 

(4) Combining information from different wavelet surfaces to improve parameter 
estimation. 
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APPENDIX A. THE INSTANTANEOUS 
CORRELATION FUNCTION (ANALYTIC 

APPROACH) 

s(t) = exp [j Y^{u)nt + Bn) (A.1) 
i6{n}/ 

Let the complex FH signal be defined as: 

N 

n=l 

where con is the hopping frequency (in radians) and 6n is the carrier phase chip of the 

nth hop. N is the total number of observed hops. The shorthand notation t € {n} 

stands for the condition: 

•to + (n - l)Th <t<t0+nTh, (A.2) 

i.e., it confines the value of the time t corresponding to the nth hop duration. Th 

denotes the hop interval and t0 denotes an initial misalignment. The resulting in- 

stantaneous correlation function(ICF) is defined in terms of the signal values at time 

(t + r/2) and (t-r/2). 

If "f' is restricted over the nth hop, the sum term (t ± r/2) may stay over the 

nth hop or may extend to (n ± 1) hop. Consider a positive "r", i.e., 0 < r < Tft, 

and let t be restricted to the first half of the nth hop and let to = 0, then, t will be 

restricted to 

(n-l)Tfc<t<(n-|)rfc, (A.3) 

and this is denoted as: 

tt{\n}, .       (A.4) 

and implies that if t is restricted to the 1st half of the nth hop s(t + r/2) will remain 

within the nth hop since 0 < r < T^. Therefore, 

(*+i)=«p(iE{^(*+i) (A.5) 
t+(r/2)€{n}, tg{(l/2)n} J / 
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If (t — r/2) stays within the nth hop or the (n — l)st hop, then, 

s{*-d = exp(s{""(*"l) 
-H) 

t-(r/2)6{n}, tg{(l/2)n} 

+W« (A.6) 
t-(r/2)e{n-l}, t€{(l/2)n}jy 

The condition t € {l/2n} is common for Equations A.5 and A.6. Therefore we take 

it from the equation body and place it aside as follows: 

\n=l  I V 2J t+(r/2)e{n) \ 2/  t-(T/2)e{n} 

-«^(t-I) IV        te{\n\. (A.7) 
\ 2/ t_(T/2)6{n-l}J/ 12    J 

The resultant terms of this summation depend on the validity of the indica- 

tor functions, i.e., terms to be combined together must have common (intersection) 

regions of their indicator functions. Thus, 

t+(r/2)€{n}, t-(r/2)€{n} 

t+(-r/2)6{n}, t-(r/2)€{n-l}. 

(A.8) 

Let us examine the regions satisfying the following conditions: 

T T 
Condition 1 :      t + - € {n}, t - - € {n}, 

Condition 2 :      t + ^ € {n}, t - ^ € {n - 1}, 

for   *€J-n|        ,r>0. (A.9) 

The region where Condition 1 is valid can be defined from Equations A.2 and 

A. 10 for (t0 = 0) as: 

(n-l)Th<t + ^<Th   and   (n- l)Th < t- T- < nTh, (A.10) 
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where 

(n - l)Th <t<(n-^\Th   and   Th>r> 0. (A.11) 

Equation A.10 and A.ll can be plotted according to the following set of inequalities 

(take, e.g., n = 1): 

t>0,t<(jj Th, 

0< r^. (A.12) 

An illustration of the corresponding set of equalities is shown in Figure 36. 

Therefore, condition 1 is valid over the triangle ABC. Similarly, condition 2 is 

defined by the following set of inequalities: 

t + ^<Th,t + ^>0,t-^>-Th,t-^<0, (A.13) 

and 0 < t(Th/2), 0 < r < T^. Condition 2 is valid over the triangle ADC, therefore 

J?(*,r)   =   expj(f>n. ^ + 0-wn(*-|) 

-**»(<+§)-«»-i(*-i) 

Condition 1 

Condition 2 )■ 

or 

AT 

R\t,r) = expj    X!^7" 
<.n=l 

+ 
Condition 1 

(Wn - W„_i)t + (Wn + Wn-l)~ 
Condition 2/ 

(A.14) 

where 0 < r, t G {(l/2)n}. 

Note for all hops, condition 1 and condition 2 valid areas will be as shown in Fig. 37 

where the areas of valid condition 1 are denoted by 1 and the areas of valid condition 

2 are denoted by 2. 
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For the case of negativ r, while t is still in the 1st half of the nth hop, we make 

use of the conjugate symmetry property of the ICF, this will conclude Condition 3 

and Condition 4 as shown in Figure 38. When t is within the second half of the nth 

hop, similar procedure will lead to the other 4 conditions (i.e., Condition 5, 6, 7, 8). 

These areas are shown in Figure 39. 

Let us now summarize our observations from the derived formulai of the ICF 

by introducing the doubly indexed function Rm^r). Rm,n{t:-T) will represent the 

ICF of the FH signal over the t - r plane inside and outside the diamond of each hop. 

Rm,n{t,T) will give the ICF expression once we assign its indices (m,n). The indices 

are shown in Figure 9. Rmfi(t, r) is given by 

Äm,n(t, r) = expj |(wm - un)t + (wro + w„)- j , (A.15) 

where m and n are the indices of the two hops. 
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Figure 36. Geometric definition of Condition 1 and Condition 2. 
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Figure 37. Areas of Condition 1 and Condition 2. 
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Figure 38. Areas of Condition 3 and Condition 4. 
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Figure 39. Areas of Condition 1,2,...,8. 
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APPENDIX B. SCORES OF OPINION TEST 

This appendix includes the tables of scores of the opinion test carried out for 

visual inspection and identification of the FH signal. Only one table is shown for each 

wavelet type. Each table is the average of 10 corresponding tables originated from 10 

experiments. This justifies the fractions in the tabulated scores. 

Table B.l: Wavelet: Complex Daub-3, SNR:10 dB 

s Real Imag. Angle Abs. 
1 5 5 4.25 1,25 
2 5 5 4.75 1 
3 4 5 2 1 
4 1 1.5 1 1 
5 1 1 1 1.25 

Table B.2: Wavelet: Real Daub-3, SNR:10 dB 

s Real Imag. Angle Abs. 
1 5 5 2.75 1 
2 5 5 5 1 
3 5 5 2 1.25 
4 1.5 1 1 2.5 
5 1 1 1 1.5 

5 — sharply obvious with sharp boundaries. 
4 — obvious. 
3 — fair. 
2 — distinguishable from background noise. 
1 — not distinguishable from background noise. 
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Table B.3: Wavelet: Complex Morlet, SNR:10 dB 

s Real Imag. Angle Abs. 
1 5 5 4.5 1 
2 5 5 4.5 1 
3 5 5 4.5 1 
4 4.25 4.75 1 3.5 
5 3.75 3.75 1 2.75 

Table B.4: Wavelet: Real Morlet, SNR:10 dB 

s Real Imag. Angle Abs. 
1 5 5 4.5 4.5 
2 5 5 4.5 4.5 
3 5 5 4.5 4.75 
4 4.75 4.75 1 3.5 
5 4.75 3.75 1 3.75 

5 — sharply obvious with sharp boundaries. 
4 — obvious. 
3 — fair. 
2 — distinguishable from background noise. 
1 — not distinguishable from background noise. 
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Table B.5: Wavelet: Complex Morlet, SNR:3 dB 

s Real Imag. Angle Abs. 
1 3.5 3.25 3.5 4 
2 4 3.5 4 3.5 
3 4.5 4.5 3.5 3.5 
4 2.5 1.75 1 3 
5 2 2.25 1 3 

Table B.6: Wavelet: Real Morlet, SNR:3 dB 

s Real Imag. Angle Abs. 
1 3 1.75 1 3.75 
2 4.5 4 2.75 3.75 
3 4.5 4.5 3 4 
4 2.75 2.75 1 2 
5 2.75 2.75 1 1.5 

5 — sharply obvious with sharp boundaries. 
4 — obvious. 
3 — fair. 
2 — distinguishable from background noise. 
1 — not distinguishable from background noise. 
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Table B.7: Wavelet: Complex Daub-3, SNR:3 dB 

s Real Imag. Angle Abs. 
1 2.8 3.6 2.2 1 
2 2.4 3.6 4.25 2.8 
3 3.4 4.25 1.4 1 
4 1.8 1 1 1 
5 1 1 1 1 

Table B.8: Wavelet: Real Daub-3, SNR:3 dB 

s Real Imag. Angle Abs. 

1 3.8 1.4 2.4 1.6 
2 3.6 3.2 4.4 3.4 
3 2.6 3.2 2.2 1.2 
4 1 1 1  • 1 
5 1 1 1 1 

5 — sharply obvious with sharp boundaries. 
4 — obvious. 
3 — fair. 
2 — distinguishable from background noise. 
1 — not distinguishable from background noise. 
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APPENDIX C. WAVELET SURFACES OF 
OTHER SIGNALS 

This appendix includes the wavelet surfaces obtained by processing noise only, 

ASK, PSK and FSK signals. Figures 40 and 41 show no identifiable diamond structure 

pattern for the noise only case. Each pair of successive figures (Figure 42 and 43, 

Figure 44 and 45, and Figure 46 and 47) show a diamond structure residing only in 

one scale . 
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Figure 40. Wavelet surfaces obtained from noise only, scale 1, 2 and 3. 
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Figure 41. Wavelet surfaces obtained from noise only, scale 4 and 5. 
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Figure 42. Wavelet surfaces obtained from ASK signal, scale 1, 2, and 3. 
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Figure 43. Wavelet surfaces obtained from ASK signal, scale 4 and 5. 
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Figure 44. Wavelet surfaces obtained from FSK signal, scale 1, 2 and 3. 
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Figure 45. Wavelet surfaces obtained from FSK signal, scale 4 and 5. 
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Figure 46. Wavelet surfaces obtained from PSK signal, scale 1, 2 and 3. 
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Figure 47. Wavelet surfaces obtained from PSK signal, scale 4 and 5. 
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